Dry lichen thalli were enclosed in gas exchange chambers and treated with an air stream of high relative humidity (96.5 to near 100%) until water potential equilibrium was reached with the surrounding air (i.e., no further increase of weight through water vapor uptake). They were then sprayed with liquid water. The treatment took place in the dark and was interrupted by short periods of light. CO exchange during light and dark respiration was monitored continuously. With no exception water uptake in all of the lichen species with green algae as phycobionts lead to reactivation of the photosynthetic metabolism. Further-more, high rates of CO assimilation were attained without the application of liquid water. To date 73 species with different types of Chlorophyceae phycobionts have been tested in this and other studies. In contrast, hydration through high air humidity alone failed to stimulate positive net photosynthesis in any of the lichens with blue-green algae (Cyanobacteria). These required liquid water for CO assimilation. So far 33 species have been investigated, and all have behaved similarly. These have included gelatinous as well as heteromerous species, most with Nostoc phycobionts but in addition some with three other Cyanophyceae phycobionts. The same phycobiont performance differences existed even within the same genus (e.g. Lobaria, Peltigera) between species pairs containing green or blue-green phycobionts respectively. Free living algae also seem to behave in a similar manner. Carbon isotope ratios of the lichen thalli suggest that a definite ecological difference exists in water status-dependent photosynthesis of species with green and blue-green phycobionts. The underlying biochemical or biophysical mechanisms are not yet understood. Apparently, a fundamental difference in the structure of the two groups of algae is involved.
Large areas of the lower epidermis of full-grown leaves of Polypodium vulgare (and Valerianella locusta) are normally separated from the mesophyll by an extensive subepidermal airspace. Epidermal stripes were prepared for experiments to simulate these conditions in order to investigate stomatal reactions. They were placed with their inner surface in contact with an airspace of uniformly high humidity. The outer surface was treated with air of varying degrees of humidity. The stomatal reactions were observed by microscope and the opening of the guard cells determined photographically.Treatment of the outer side of the epidermis with dry air led to a rapid closing of the stomata, whilst moist air caused opening. This induction of opening and closing movements could be repeated up to 15 times with the same stoma by changing the degree of humidity. Neighbouring groups of stomata showed different apertures according to their individual humidity conditions. The degree of aperture of the stomata depended on the water potential of the ambient air and also on the humidity conditions in the subepidermal airspace.The cause of this stomatal behaviour could lie in the "peristomatal transpiration". In this way, the guard cells are able to function as "humidity sensors" which "measure" the difference in water potential inside and outside the leaf. Their aperture thus is controlled by their individual transpiration conditions. This controlling mechanism could be very important for the water economy of plants. They would appear to be able to reduce their transpiration through an increase in diffusion resistance of the stomata during decreasing humidity in the ambient air, without changing the water status of the whole leaf.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.