No abstract
Abstract. Mid infrared spectra provide a powerful probe of the conditions in dusty galactic nuclei. They variously contain emission features associated with star forming regions and absorptions by circumnuclear silicate dust plus ices in cold molecular cloud material. Here we report the detection of 6-8 µm water ice absorption in 18 galaxies observed by ISO. While the mid-IR spectra of some of these galaxies show a strong resemblance to the heavily absorbed spectrum of NGC 4418, other galaxies in this sample also show weak to strong PAH emission. The 18 ice galaxies are part of a sample of 103 galaxies with good S/N mid-IR ISO spectra. Based on our sample we find that ice is present in most of the ULIRGs, whereas it is weak or absent in the large majority of Seyferts and starburst galaxies. This result is consistent with the presence of larger quantities of molecular material in ULIRGs as opposed to other galaxy types. Like NGC 4418, several of our ice galaxy spectra show a maximum near 8 µm that is not or only partly due to PAH emission. While this affects only a small part of the galaxy population studied by ISO, it stresses the need for high S/N data and refined diagnostic methods, to properly discriminate spectra dominated by PAH emission and spectra dominated by heavy obscuration. The spectral variation from PAH emission to absorbed continuum emission near 8 µm shows strong similarities with Galactic star forming clouds. This leads us to believe that our classification of ice galaxy spectra might reflect an evolutionary sequence from strongly obscured beginnings of star formation (and AGN activity) to a less enshrouded stage of advanced star formation (and AGN activity), as the PAHs get stronger and the broad 8 µm feature weakens.
Abstract. We present mid-infrared spectro-imaging (5−16 µm) observations of the infrared luminous interacting system Arp 299 (= Mrk 171 = IC 694+NGC 3690) obtained with the ISOCAM instrument aboard ISO. Our observations show that nearly 40% of the total emission at 7 and 15 µm is diffuse, originating from the interacting disks of the galaxies. Moreover, they indicate the presence of large amounts of hot dust in the main infrared sources of the system and large extinctions toward the nuclei. While the observed spectra have an overall similar shape, mainly composed of Unidentified Infrared Bands (UIB) in the short wavelength domain, a strong continuum at ∼13 µm and a deep silicate absorption band at 10 µm, their differences reveal the varying physical conditions of each component. For each source, the spectral energy distribution (SED) can be reproduced by a linear combination of a UIB "canonical" spectral template and a hot dust continuum due to a 230−300 K black body, after independently applying an extinction correction to both of them. We find that the UIB extinction does not vary much throughout the system (A V < ∼ 5 mag) suggesting that most UIBs originate from less enshrouded regions. IC 694 appears to dominate the infrared emission of the system and our observations support the interpretation of a deeply embedded nuclear starburst located behind an absorption of about 40 magnitudes. The central region of NGC 3690 displays a hard radiation field characterized by a [Ne]/[Ne] ratio ≥1.8. It also hosts a strong continuum from 5 to 16 µm which can be explained as thermal emission from a deeply embedded (A V ∼ 60 mag) compact source, consistent with the mid-infrared signature of an active galactic nucleus (AGN), and in agreement with recent X-ray findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.