The turbulent flow around a circular cylinder has been investigated at Re=5000Re=5000 using direct numerical simulations. Low frequency behavior, vortex undulation, vortex splitting, vortex dislocations and three dimensional flow within the wake were found to happen at this flow regime. In order to successfully capture the wake three dimensionality, different span-wise lengths were considered. It was found that a length LZ=2pDLZ=2pD was enough to capture this behavior, correctly predicting different aspects of the flow such as drag coefficient, Strouhal number and pressure and velocity distributions when compared to experimental values. Two instability mechanisms were found to coexist in the present case study: a global type instability originating in the shear layer, which shows a characteristic frequency, and a convective type instability that seems to be constantly present in the near wake. Characteristics of both types of instabilities are identified and discussed in detail. As suggested by Norberg, a resonance-type effect takes place in the vortex formation region, as the coexistence of both instability mechanisms result in distorted vortex tubes. However, vortex coherence is never lost within the wake.Peer ReviewedPostprint (author's final draft
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.