Parity games play an important role for LTL synthesis as evidenced by recent breakthroughs on LTL synthesis, which rely in part on parity game solving. Yet state space explosion remains a major issue if we want to scale to larger systems or specifications. In order to combat this problem, we need to investigate symbolic methods such as BDDs, which have been successful in the past to tackle exponentially large systems. It is therefore essential to have symbolic parity game solving algorithms, operating using BDDs, that are fast and that can produce the winning strategies used to synthesize the controller in LTL synthesis. Current symbolic parity game solving algorithms do not yield winning strategies. We now propose two symbolic algorithms that yield winning strategies, based on two recently proposed fixpoint algorithms. We implement the algorithms and empirically evaluate them using benchmarks obtained from SYNTCOMP 2020. Our conclusion is that the algorithms are competitive with or faster than an earlier symbolic implementation of Zielonka's recursive algorithm, while also providing the winning strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.