In the world of internet of things (IoT), obtaining the physical location of devices has always been a task of great interest for developing increasingly complex location-based services (LBS). That is why in recent years wireless communication standards have been incorporating new additions focused on providing localization mechanisms to technologies widely used in the IoT world, such as Wi-Fi or Bluetooth. In particular, the IEEE 802.11-2016 Wi-Fi standard introduced ranging estimation between two devices through the so-called fine time measurement (FTM) protocol, defined by the IEEE 802.11mc. FTM is not yet widespread in the IoT field, but commercial modules capable of offering this functionality at a reasonable price are starting to appear. In early 2021, the most widespread system on a chip (SOC) family among IoT devices, the ESP32-XX series, added support for this Wi-Fi standard, enabling, for the first time, the use of a standard designed for location-based systems. This paper analyzes the performance of this FTM implementation by carrying out and studying several measurement campaigns in different indoor and outdoor scenarios. Additionally, this work proposes an alternative real-time implementation for distance estimation inside the ESP32 using an approach based on machine learning. Such an implementation is successfully validated in a scenario totally different than those considered for the training and test sets. Finally, both the measurement sets and the developed software are available to the scientific community.
Chondromyxoid fibroma (CF) is a benign bone tumor of cartilaginous origin and is considered the least common of cartilage-derived neoplasms. The lesion's most frequent location is in long bones, while involvement of craniofacial skeleton is extremely unusual. It generally appears in the second and third decade of life and most frequent in men. We present the case of a 68-year-old female with a CF of the zygomatic region. The resection of the tumor and reconstruction of the defect is described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.