The simulation of the chip heating process in the zones of gas-flame and induction heating of a continuous muffle furnace has been carried out. The mechanisms of heat transfer (conductive, convective, radiative) that have a conjugated character are considered in the approximation of interpenetrating continuums in the absence of any noticeable influence of filtration processes under conditions of a highly porous chip medium. As a result of the analysis of heat and mass transfer in the porous chip body and the working space of the furnace, a system of equations was obtained for calculating temperature and concentration fields and fields of thermal radiation intensity depending on the specified furnace productivity, natural gas consumption, and oil concentration in the coolant. The system of equations, which is a model of heat and mass transfer processes, is closed and allows us to solve the problem posed – to determine the heating temperature of the chips at the exit from the gas-flame heating zone, the composition and residual content of the liquid phase in it, and also to find the optimal height and temperature of the inductor muffle in induction heating zone, dimensions and electrical parameters of the inductor.
The description of the device and principle of operation of the continuous muffle furnace for hot briquetting of chip‑powder dispersions of ferrous metals is given. A distinctive feature of this device is the presence of two systems of gas‑flame and induction heating, as a result of which the achievement of the specified charge heating temperature is guaranteed with the complete removal of the liquid phase. The oil component of the coolant is used to create a protective hydrocarbon atmosphere that provides non‑oxidizing heating of the metal, as well as to obtain a carbon coating, which, in addition to protective functions, acts as a lubricant in the hot briquetting process. Subsequent combustion of oil vapors in the furnace leads to significant savings in natural gas. A furnace built according to this principle has the smallest dimensions and the highest technical and economic characteristics.The simulation of the chip heating process in the zone of loading into the furnace is carried out. The dependences of the temperature of the chips at the outlet of the screw feeder on the temperature of the flue gases at the inlet for the mass fraction of coolant in the chips of 10 % and various fractions of oil are obtained. It has been established that during the heating of the chips in the loading zone, phase transformations of the coolant do not occur, the charge heating temperature does not exceed 100 °C.
The process of inorganic and organic components temperature transformation of metal waste into solid and gaseous products in a continuous hot briquetting muffle furnace has been studied. The composition of the hydrocarbon atmosphere formed in the muffle under conditions of limited access to the oxidizer has been determined. It is shown that the thermal destruction of the coolant oil phase proceeds according to a complex mechanism of consecutive reactions, including polycondensation, polymerization, and deep compaction with a constant decrease in the hydrogen content and ends with the formation of a coke‑like carbon residue on the surface of metal particles and an air suspension of finely dispersed carbon particles (smoke). When it is heated to hot briquetting temperatures of 750–850 °C, chemically active dispersions of ferrous metals are protected from oxidation first by a hydrocarbon gas with a density of 9.0–13.5 kg/m3, then by a pyrocarbon coating with a thickness of 0.1–0.3 mm up to the completion of the processes of pressing and cooling the briquette.
The mathematical analysis of plastic flow processes under uniform plane, axisymmetric and volumetric deformation is carried out. The analysis is based on the external shape change of the body, which determines the movement of material points. It is shown that the plastic flow of an isotropic rigid-plastic body under plane deformation obeys the hyperbolic law, and for axisymmetric and volumetric deformations – the inverse square law. Spatial-geometric expressions of these laws made it possible to reveal and explain in a new way the physical essence of plastic shear. It is proved that the stressed state of a body under uniform tension-compression deformation is complex and cannot be defined as “linear”. The normal stress, which coincides with the direction of the resulting deformation force, is not the main one, since in the areas perpendicular to this direction, the shear stresses are not equal to zero. Examples of solving technological problems are given: extrusion of cylindrical billets and wire drawing, rolling of a wide strip of rectangular profile. It is shown that the problems of determining the stress-strain state of isotropic rigid-plastic bodies along the known trajectories of movement of material points are statically definable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.