The results confirm that type 2 diabetes slows the dynamic response of VO2 during light and moderate relative intensity exercise in females but that this occurs in the absence of any slowing of the CO response during the initial period of exercise.
In this study we tested the hypothesis that type 2 diabetes impairs the dynamic response of leg vascular conductance (LVC) during exercise. LVC (leg blood flow/mean arterial pressure) responses were studied during intermittent contractions of the calf muscle in subjects with type 2 diabetes (n = 9), heavy controls (n = 10) and lean controls (n = 8) using a biexponential function and an estimate of the mean response time (MRT). The time constant of the second phase of LVC was significantly greater in type 2 diabetes (66.4 ± 29.2 s) than the heavy (22.2 ± 13.4 s) and lean (21.8 ± 9.3 s) controls, resulting in a significantly greater MRT in the diabetic group (median ] s). These data support the hypothesis and suggest that a slowed hyperaemic response in the exercising limb might contribute to exercise intolerance in diabetic subjects.
BackgroundA number of dietary quality indices (DQIs) have been developed to assess the quality of dietary intake. Analysis of the intake of individual nutrients does not reflect the complexity of dietary behaviours and their association with health and disease. The aim of this study was to determine the dietary quality of individuals with type 2 diabetes mellitus (T2DM) using a variety of validated DQIs.MethodsIn this cross-sectional analysis of 111 Caucasian adults, 65 cases with T2DM were recruited from the Diabetes Day Care Services of St. Columcille’s and St. Vincent’s Hospitals, Dublin, Ireland. Forty-six controls did not have T2DM and were recruited from the general population. Data from 3-day estimated diet diaries were used to calculate 4 DQIs.ResultsParticipants with T2DM had a significantly lower score for consumption of a Mediterranean dietary pattern compared to the control group, measured using the Mediterranean Diet Score (Range 0–9) and the Alternate Mediterranean Diet Score (Range 0–9) (mean ± SD) (3.4 ± 1.3 vs 4.8 ± 1.8, P < 0.001 and 3.3 ± 1.5 vs 4.2 ± 1.8, P = 0.02 respectively). Participants with T2DM also had lower dietary quality than the control population as assessed by the Healthy Diet Indicator (Range 0–9) (T2DM; 2.6 ± 2.3, control; 3.3 ± 1.1, P = 0.001). No differences between the two groups were found when dietary quality was assessed using the Alternate Healthy Eating Index. Micronutrient intake was assessed using the Micronutrient Adequacy Score (Range 0–8) and participants with T2DM had a significantly lower score than the control group (T2DM; 1.6 ± 1.4, control; 2.3 ± 1.4, P = 0.009). When individual nutrient intakes were assessed, no significant differences were observed in macronutrient intake.ConclusionOverall, these findings demonstrate that T2DM was associated with a lower score when dietary quality was assessed using a number of validated indices.
Background:Several obesity related factors are reported to exacerbate premature arterial stiffening, including inactivity and metabolic disarray. The aim of the current study was to investigate the relationship between physical activity, arterial stiffness and adiposity using objective methods. To further explore the role of adiposity in this complex process, obesity associated anthropometric and humoral biomarkers were measured.Methods:Seventy-nine healthy, lifelong nonsmoking subjects were recruited. Habitual physical activity was measured using accelerometry. Arterial stiffness [augmentation index (AIx) and pulse wave velocity (PWV)] was measured using tonometry. Body composition was estimated using bioimpedence. Adipose associated biomarkers, leptin and adiponectin, were also measured.Results:Sedentary time was significantly associated with AIx (r = 0.38, P < .001), PWV (r = 0.33, P < .01), body fat composition (r = 0.40, P < .001) and age (r = 0.30, P < .01). Moderate-to-vigorous physical activity (MVPA) was inversely correlated with AIx (r = –0.28, P < .05), body fat composition (r = –0.30, P < .01), postprandial insulin (r = –0.35, P < .01), and leptin/adiponectin ratio (r = –0.28, P < .05). MVPA, body fat composition, and postprandial insulin remained independent predictors of AIx but not PWV.Conclusion:The more time healthy individuals spend being sedentary, the greater their body fat and arterial stiffness. Conversely higher activity levels are associated with reduced body fat and less arterial stiffness.
Supervised exercise (SE) in patients with type 2 diabetes improves oxygen uptake kinetics at the onset of exercise. Maintenance of these improvements, however, has not been examined when supervision is removed. We explored if potential improvements in oxygen uptake kinetics following a 12-week SE that combined aerobic and resistance training were maintained after a subsequent 12-week unsupervised exercise (UE). The involvement of cardiac output (CO) in these improvements was also tested. Nineteen volunteers with type 2 diabetes were recruited. Oxygen uptake kinetics and CO (inert gas rebreathing) responses to constant-load cycling at 50% ventilatory threshold (VT), 80% VT, and mid-point between VT and peak workload (50% Δ) were examined at baseline (on 2 occasions) and following each 12-week training period. Participants decided to exercise at a local gymnasium during the UE. Thirteen subjects completed all the interventions. The time constant of phase 2 of oxygen uptake was significantly faster (p < 0.05) post-SE and post-UE compared with baseline at 50% VT (17.3 ± 10.7 s and 17.5 ± 5.9 s vs. 29.9 ± 10.7 s), 80% VT (18.9 ± 4.7 and 20.9 ± 8.4 vs. 34.3 ± 12.7s), and 50% Δ (20.4 ± 8.2 s and 20.2 ± 6.0 s vs. 27.6 ± 3.7 s). SE also induced faster heart rate kinetics at all 3 intensities and a larger increase in CO at 30 s in relation to 240 s at 80% VT; and these responses were maintained post-UE. Unsupervised exercise maintained benefits in oxygen uptake kinetics obtained during a supervised exercise in subjects with diabetes, and these benefits were associated with a faster dynamic response of heart rate after training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.