The genetic and biochemical basis of defence mechanisms in plant pathogenic fungi against antifungal compounds produced by antagonistic microorganisms is largely unknown. The results of this study show that both degradative and non-degradative defence mechanisms enable the plant pathogenic fungus Botrytis cinerea to resist the broad-spectrum, phenolic antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG). The efflux pump BcAtrB provides the first line of defence for B. cinerea, preventing accumulation of 2,4-DAPG in the cell to toxic concentrations, whereas the extracellular laccase BcLCC2 mediates, via conversion of tannic acid, subsequent degradation of 2,4-DAPG. Expression of BcatrB is induced by 2,4-DAPG and efflux gives B. cinerea sufficient time to more effectively initiate the process of BcLCC2-mediated antibiotic degradation. This is supported by the observations that the BcatrB mutant is significantly more sensitive to 2,4-DAPG than its parental strain, and is substantially less effective in 2,4-DAPG degradation. The results of this study further showed that BcLCC2 itself is not able to degrade 2,4-DAPG, but requires tannic acid as a mediator for 2,4-DAPG degradation. To our knowledge, this is the first time that the laccase-mediator system is shown to play a role in the detoxification of a broad-spectrum antibiotic compound from bacterial origin. We postulate that yet unknown constituents present in tannic acid act as substrate(s) of BcLCC2, thereby generating radicals that mediate 2,4-DAPG degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.