A new extraction technique has been studied at the CERN Proton Synchrotron with a view of using it for the fixed-target physics programme at the Super Proton Synchrotron. The extraction scheme is based on advanced concepts of non-linear beam dynamics: prior to extraction a particle beam is split into several beamlets in a transverse plane by crossing a stable resonance, which allows extracting the beamlets over multiple turns. The principle of the extraction, the detail of its implementation, and the progress of the beam commissioning over the years are discussed here. More importantly, the results obtained during the first period of successful use for the physics programme are presented, focusing on the performance analysis of the novel extraction.
Following a successful commissioning period, the multiturn extraction (MTE) at the CERN Proton Synchrotron (PS) has been applied for the fixed-target physics programme at the Super Proton Synchrotron (SPS) since September 2015. This exceptional extraction technique was proposed to replace the longserving continuous transfer (CT) extraction, which has the drawback of inducing high activation in the ring. MTE exploits the principles of nonlinear beam dynamics to perform loss-free beam splitting in the horizontal phase space. Over multiple turns, the resulting beamlets are then transferred to the downstream accelerator. The operational deployment of MTE was rendered possible by the full understanding and mitigation of different hardware limitations and by redesigning the extraction trajectories and nonlinear optics, which was required due to the installation of a dummy septum to reduce the activation of the magnetic extraction septum. This paper focuses on these key features including the use of the transverse damper and the septum shadowing, which allowed a transition from the MTE study to a mature operational extraction scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.