The existing Globus-M machine [1] is a low aspect ratio compact tokamak (R = 0.36 m, a = 0.24 m) with high specific ohmic and auxiliary heating power. First plasma was achieved in Globus-M in 1999. The machine has demonstrated practically all of the project objectives ever since. Target design parameters (aspect ratio-1.5, 2 − X-point configuration, vertical elongation-2.2, traiangularity-0.45, average density-1.0•10 20 m −3 , plasma current-0.3 MA, toroidal beta-12%, auxiliary heating power-1 MW) [2] were achieved and some of them overcame [3,4]. Also Globus-M
A computational model is developed that allows one to estimate in a real 3-D geometry the electrodynamic characteristics of complicated waveguide antennas ('grills') generating plasma waves in the lower hybrid frequency band. The antenna coupling efficiency and the shape of the wavenumber spectrum are found as a solution of a self-consistent problem taking into account a complete set of waveguide eigenmodes and finite waveguide dimensions in both directions and an arbitrary orientation to the plasma magnetic field. Electric and magnetic fields inside the waveguides are equated to the outside fields represented as a Fourier sum over wavenumbers Ny, Nz in the plane parallel to the plasma surface. The fields at the plasma edge are determined by the 2*2 plasma surface impedance matrix found as a numerical solution of the wave equation in the cold plasma approximation using the finite element (Galerkin) method. The solution is found on a 1-D mesh, i=1, 2, ..., N, in the form E(xi,Ny,Nz) exp(i(Nyy+Nzz- omega t)) so that the fourth order differential equation with appropriate boundary conditions is reduced to a set of 4N+2 algebraic equations. The developed model is applied to modelling a quite new antenna design for generating the fast H waves, which can be used for plasma heating and current drive in tokamaks of ITER scale. The antenna parameters are optimized to obtain the best coupling efficiency. The structure of waves excited in the plasma at various angles between the antenna and the plasma magnetic field is considered. The nature of the waves with Nz<1 excited by the grill is discussed
The targeted plasma parameters of the compact spherical tokamak (ST) Globus-M have basically been achieved. The reasons that prevent further extension of the operating space are discussed. The operational limits of Globus-M together with an understanding of the limiting reasons form the basis for defining the design requirements for the next-step, Globus-M2. The recent experimental and theoretical results achieved with Globus-M are discussed, the operational problems and the research programme are summarized and finally, the targeted Globus-M2 parameters are presented. The magnetic field and plasma current in Globus-M2 will be increased to 1 T and 0.5 MA, respectively. The plasma dimensions will remain unchanged. With auxiliary heating at a high average plasma density, the temperatures will be in the keV range and the collisionality parameter with ν * 1 will define the operational conditions. Noninductive current drive will be a major element of the programme. The engineering design issues of Globus-M2 tokamak are discussed and the technical tokamak parameters are confirmed by thermal load and stress analysis simulations. The experimental results obtained on Globus-M2 and the limits of its performance should clarify the feasibility of an ST-based super compact neutron source.
The first experiments on noninductive current drive (CD) using lower hybrid waves in a spherical tokamak are described. Waves at 2.45 GHz were launched by a 10 waveguide grill with 120° phase shift between neighbouring waveguides. The experimental results for a novel poloidal slowing-down scheme are described. The CD efficiency is found to be somewhat larger than that predicted theoretically whilst at the same time being somewhat less than that for standard tokamak lower hybrid CD. Geodesic acoustic modes (GAM) have been discovered in Globus-M. GAMs are localized 2-3 cm inside the separatrix. The GAM frequency agrees with theory. The mode structures of plasma density and magnetic field oscillation at the GAM frequency have been studied. Fast particle confinement during neutral beam injection has been investigated and numerically simulated. Alfvén instabilities excited by fast particles were detected by a toroidal Mirnov probe array. Their excitation conditions are discussed and the dynamics of fast ion losses induced by Alfvén eigenmodes is presented. Preliminary experiments on the isotopic effect influence on global confinement in the ohmic Nuclear Fusion
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.