Transparent conducting oxides (TCOs), such as indium tin oxide and zinc oxide, play an important role as electrode materials in organic-semiconductor devices. The properties of the inorganic-organic interface-the offset between the TCO Fermi level and the relevant transport level, the extent to which the organic semiconductor can wet the oxide surface, and the influence of the surface on semiconductor morphology-significantly affect device performance. This review surveys the literature on TCO modification with phosphonic acids (PAs), which has increasingly been used to engineer these interfacial properties. The first part outlines the relevance of TCO surface modification to organic electronics, surveys methods for the synthesis of PAs, discusses the modes by which they can bind to TCO surfaces, and compares PAs to alternative organic surface modifiers. The next section discusses methods of PA monolayer deposition, the kinetics of monolayer formation, and structural evidence regarding molecular orientation on TCOs. The next sections discuss TCO work-function modification using PAs, tuning of TCO surface energy using PAs, and initiation of polymerizations from TCO-tethered PAs. Finally, studies that examine the use of PA-modified TCOs in organic light-emitting diodes and organic photovoltaics are compared.
We use dipolar phosphonic acid self-assembled monolayers (PA SAMs) to modify the work function of the hole-extracting contact in polymer/fullerene bulk heterojunction solar cells. We observe a linear dependence of the open-circuit voltage (V OC ) of these organic photovoltaic devices on the modified indium tin oxide (ITO) work function when using a donor polymer with a deep-lying ionization energy. With specific SAMs, we can obtain V OC values exceeding those obtained with the common poly(3,4ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) hole-extraction layer. We measure charge-carrier lifetimes and densities using transient photovoltage and charge extraction in a series of devices with SAM-modified contacts. As expected, these measurements show systematically longer carrier lifetimes in devices with higher V OC values; however, the trends provide useful distinctions between different hypotheses of how transient photovoltage decays might be controlled by surface chemistry. We interpret our results as being consistent with changes in the band bending at the ITO/bulk heterojunction interface that have the net result of altering the internal electric field to help prevent electrons in fullerene domains from undergoing surface recombination at the hole-extracting electrode. SECTION: Energy Conversion and Storage; Energy and Charge Transport
Polymer materials with large dielectric constants are desirable for the development of high energy density capacitors. We show that the dielectric properties of poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-CTFE)] can be improved by the use of processing conditions that favor formation of a highly crystalline morphology of the nonpolar α-phase. Through the use of spin coating, thermal treatment above the melting temperature, and quenching, we were able to attain a highly crystalline, α-phase rich morphology that has a quite large dielectric constant of 77 ± 10 at 1 kHz. The final morphology and phase composition of the terpolymer films depend strongly on the postprocessing thermal treatment and the quality of the solvent. Evaluation of the polarization behavior of the terpolymer films as a function of electric field reveal that the polymer exhibits a relaxor-ferroelectric behavior and has a substantial energy density of 9.7 J/cm(3) at fields of up to approximately 470 V/μm. Under millisecond pulsed charge-discharge measurements a 3-fold increase in energy density (27 J/cm(3)) is obtained at high fields (∼600 V/μm). Our study demonstrates that the processing conditions and morphology of fluorinated terpolymer films are controlling factors for achievement of high dielectric permittivity and energy density that are critical for high performance capacitors.
Efforts to utilize the high intrinsic thermal conductivity of carbon nanotubes (CNTs) for thermal transport applications, namely for thermal interface materials (TIMs), have been encumbered by the presence of high thermal contact resistances between the CNTs and connecting materials. Here, a pyrenylpropyl‐phosphonic acid surface modifier is synthesized and applied in a straight forward and repeatable approach to reduce the thermal contact resistance between CNTs and metal oxide surfaces. When used to bond nominally vertically aligned multi‐walled CNT forests to Cu oxide surfaces, the modifier facilitates a roughly 9‐fold reduction in the thermal contact resistance over dry contact, enabling CNT‐based TIMs with thermal resistances of 4.6 ± 0.5 mm2 K W−1, comparable to conventional metallic solders. Additional experimental characterization of the modifier suggests that it may be used to reduce the electrical resistance of CNT‐metal oxide contacts by similar orders of magnitude.
Hybrid organic-inorganic sol-gel dielectric thin films from a neat 2-cyanoethyltrimethoxysilane (CNETMS) precursor have been fabricated and their permittivity, dielectric strength, and energy density characterized. CNETMS sol-gel films possess compact, polar cyanoethyl groups and exhibit a relative permittivity of 20 at 1 kHz and breakdown strengths ranging from 650 V/μm to 250 V/μm for film thicknesses of 1.3 to 3.5 μm. Capacitors based on CNETMS films exhibit extractable energy densities of 7 J/cm(3) at 300 V/μm, as determined by charge-discharge and polarization-electric field measurements, as well as an energy extraction efficiency of ~91%. The large extractable energy resulting from the linear dielectric polarization behavior suggests that CNETMS films are promising sol-gel materials for pulsed power applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.