Aggregates constitute more than 90% of concrete and significantly determine the strength of concrete. In this study, the shape characteristics such as flakiness and elongation were determined using elongation and thickness gauge. The aggregate used for the study is granite. Aggregate crushing value and aggregate impact value tests were performed on the aggregate while slump test, water absorption test, compressive strength test and flexural strength test were carried out on concrete. A total of one hundred and thirty-two concrete cubes were produced using 1:2:4 and 1:3:6 mix each for the compressive strength test and forty-eight reinforced concrete beams were produced for flexural strength test. The slump for all the samples tested was examined to be true. The compressive strength of the concrete cube was greatly affected by the shape of aggregate used and it was noted that; for lower percentage of flaky and elongated aggregate the compressive strength is moderately high compared to when the percentage is high. The highest obtained compressive strength, 15N/mm2 is in compliance with the concrete compressive strength of normal 1:2:4 mix as stipulated in ASTM C109, Also, with 30% of elongated aggregate and 30% of flaky, the flexural strength of 7.03 N/mm2 was obtained. This shows that aggregate shape is a very important property of coarse aggregate that must be put into consideration in production of quality concrete for construction works.
Aim: A Community-Based Anaerobic Digester was designed in this study for sustainable solid waste management in Ile-Oluji, Ondo state Nigeria. Methodology: Waste samples were collected from selected households for a period of one month and the components and percentage composition were determined. Afterwards, the physico-chemical characteristics of the substrate was investigated and the result used to design a community-based anaerobic digester. Results: The quantity, components and characteristics of waste generated was determined. The rate of waste generation was found to be 0.2kg/capita/day while the organic fraction of the total waste generated was found to be 55.7%. Physico-chemical characterization of the substrate was also investigated. The pH was found to be 6.36 ± 0.18, while the alkalinity 692.81 ± 78.62. The moisture content was found to be in the range of 71.20 ± 4.63%. Total solid was in the range 38.91 ± 5.25 while volatile solid was found to be 26.44 ± 2.83. carbon oxygen demand was found to be 834.33 ± 12.61, total phosphorus was in the range 4.20 ± 0.33. The Carbon on a dry weight basis was found to be in the range 60.41 ± 2.38, while nitrogen was found to be 4.79 ± 1.03. The C/N ration was found to be 21.61. The biogas yield ranged from 0 – 320 cm3 and 0 – 380cm3 per litre of substrate for biodegradable-only samples and biodegradable-cow dung samples respectively, for a forty days period of retention. The cylindrical dome type biogas digester was chosen for this study because of its simplicity in design and maintenance coupled with lower set up cost. The optimum volume of hydraulic chamber and gas storage chamber were designed to be the same as 850m3. Volume of fermentation chamber and sludge layer were calculated to be 2014m3 and 246m3 respectively, while the height and diameter of the fermentation chamber were 7m and 17m respectively. Conclusion: Anaerobic digestion of the biodegradable fraction of solid waste is a viable alternative that government and non-government organizations can key into for the improvement of public health especially in developing countries. The standardization of digester design parameters may pose challenges because of varying climatic conditions and complex socio-economic factors across different geographical contexts. Solutions may have to be adapted and localized to achieve a sustainable world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.