When magnetic-passive bearings are heated, the magnetic properties of permanent magnets change and, therefore, the force of interaction between them changes. Depending on the temperature and exposure time, irreversible changes in the strength of the interaction of magnets occur, caused by changes in the magnetic structure, phase composition, as well as reversible changes due to the temperature dependence of the magnetization and coercive force of the magnet material. A distinctive feature of the operation of magnets in bearings is the effect of large external magnetic fields on them. For this reason, it is impossible to predict in advance the properties of bearings at elevated temperatures using only the data given in the literature for magnetically rigid materials or individual magnets. The influence of temperature on the interaction of two coaxially arranged magnets modeling a part of a bearing is theoretically and experimentally considered. Numerical values of temperature coefficients of changes in bearing capacity and stiffness of bearings are determined, as well as the theoretical conclusion about the constancy of these coefficients for bearings with optimal magnet sizes is confirmed.
The practical interest in passive magnetic bearings is due to the fact that they are not subject to wear and have insignificant dissipative energy losses. However, when the magnets are heated during operation, a reversible and irreversible decrease in the residual magnetization occurs and, consequently, the force of interaction between them changes. The thermal properties of passive magnetic bearings are adversely affected by the large demagnetizing fields from the coupled magnets. To predict the performance of passive magnetic bearings with regard to external temperature, an assessment of temperature changes in the bearing capacity of bearings with optimally shaped magnets is necessary. The optimum magnets were considered to be those with sizes, whose interaction force, reduced to a single volume of magnetic material, was the maximum. A magnetic system of two cylindrical magnets with equal radii and heights located coaxially or with some radial displacement was considered. The studies were carried out on cylindrical magnets made of SmCo5 alloy, capable of maintaining magnetically hard properties at temperatures up to 250°C. It was confirmed that irreversible changes in the magnetic force for bearings with optimally sized magnets are close to each other. The destabilizing (radial) magnetic force at small radial displacements of one of the magnets also irreversibly decreased. A temperature of 250°C defines the upper limit of the temperature range for the normal operation of magnetic bearings with SmCo5 magnets. It was found that as a result of the action of a demagnetizing field on magnets during heating, they develop a significant inhomogeneity of magnetization over the volume. After demagnetization of the magnets kept at a temperature of 260 °C, the force of their interaction reaches only 85 - 90% of the original, which is associated with microstructural changes in the magnets. Theoretically and experimentally, the numerical values of the temperature coefficients of changes in the bearing capacity and stiffness of bearings are determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.