The classical NP-hard weighted vertex coloring problem consists in minimizing the number of colors in colorings of vertices of a given graph so that, for each vertex, the number of its colors equals a given weight of the vertex and adjacent vertices receive distinct colors. The weighted chromatic number is the smallest number of colors in these colorings. There are several polynomial-time algorithmic techniques for designing efficient algorithms for the weighted vertex coloring problem. For example, standard techniques of this kind are the modular graph decomposition and the graph decomposition by separating cliques. This article proposes new polynomial-time methods for graph reduction in the form of removing redundant vertices and recomputing weights of the remaining vertices so that the weighted chromatic number changes in a controlled manner. We also present a method of reducing the weighted vertex coloring problem to its unweighted version and its application. This paper contributes to the algorithmic graph theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.