Detailed instantaneous velocity fields of a jet in crossflow have been measured with stereoscopic particle image velocimetry (PIV). The jet originated from a fully developed turbulent pipe flow and entered a crossflow with a turbulent boundary layer. The Reynolds number based on crossflow velocity and pipe diameter was 2400 and the jet to crossflow velocity ratios wereR=3.3 andR=1.3. The experimental data have been analysed by proper orthogonal decomposition (POD). ForR=3.3, the results in several different planes indicate that the wake vortices are the dominant dynamic flow structures and that they interact strongly with the jet core. The analysis identifies jet shear-layer vortices and finds that these vortical structures are more local and thus less dominant. ForR=1.3, on the other hand, jet shear-layer vortices are the most dominant, while the wake vortices are much less important. For both cases, the analysis finds that the shear-layer vortices are not coupled to the dynamics of the wake vortices. Finally, the hanging vortices are identified and their contribution to the counter-rotating vortex pair (CVP) and interaction with the newly created wake vortices are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.