This work is devoted to the exploration of the compatibility of the hybrid plasma-catalytic conversion of liquid hydrocarbons into syngas with the concept of sustainable development. The results of experimental investigations indicate the high efficiency of plasma-catalytic conversion of ethanol to syngas and the small amount of waste (a few percent of feedstock weight). The results of the simulation of the kinetics using ZDPlasKin code for thermochemical and hybrid plasma-catalytic conversion.
Experimental studies of the electrical parameters of the microdischarge and the plasma of the microdischarge in the vortex flow of CO<sub>2</sub> as the plasma-forming gas was carried out. The kinetics of the formation of some components of microwave plasma was considered using ZDPlasKin computer code and Bolsig+ at experimentally measured electric field strengths, pressure and gas temperature. The key reactions of microdischarge were determined. The Bolsig+ code was used to determine the mean energy of electrons.
A microdischarge system has been studied with the use of various plasma gases. The results of emission spectroscopy and measurements of the current-voltage characteristics are reported. The discharge parameters for the vibrational and rotational levels of plasma components are determined. K e y w o r d s: microdischarge, vortex flow, optical emission spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.