Abstract. We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved -cosmology, astrophysics, nuclear, and particle physics -in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.
The KArlsruhe TRItium Neutrino (KATRIN) experiment, which aims to make a direct and model-independent determination of the absolute neutrino mass scale, is a complex experiment with many components. More than 15 years ago, we published a technical design report (TDR) [1] to describe the hardware design and requirements to achieve our sensitivity goal of 0.2 eV at 90% C.L. on the neutrino mass. Since then there has been considerable progress, culminating in the publication of first neutrino mass results with the entire beamline operating [2]. In this paper, we document the current state of all completed beamline components (as of the first neutrino mass measurement campaign), demonstrate our ability to reliably and stably control them over long times, and present details on their respective commissioning campaigns. K: Beam-line instrumentation (beam position and profile monitors, beam-intensity monitors, bunch length monitors); Spectrometers; Gas systems and purification; Neutrino detectors A X P : 2103.04755Neutrino-mass mode. This is the standard mode of operation to continually adjust the retarding voltage of the MS in the range of [ 0 − 40 eV; 0 + 50 eV] while tritium is in the system. This scanning range can be adjusted if required. The voltage and the time spent at each setting are defined by the Measurement Time Distribution (MTD) (figure 3). A typical run at a given voltage lasts between 20 s and 600 s; a full scan of the energy range given above takes about 2 h. Of these standard neutrino-mass runs, a small portion will be dedicated to sterile neutrino searches. These searches involve scanning much farther (order of keV) below the endpoint 0 .Calibration mode. To check the long-term system stability, calibration measurements are done regularly. The neutrino-mass mode is suspended for the duration of these measurement:• An energy calibration of the FPD (section 6) is performed weekly, which requires closing off the detector system from the main beamline for about 4 h.• The offset and the gain correction factor of the low-voltage readout in the high-voltage measurement chain needs to be calibrated based on standard reference sources (section 5.3.4). This requires stopping the precision monitoring of the MS retarding potential twice per week for about 0.5 h each.
The Karlsruhe Tritium Neutrino (KATRIN) experiment is a large-scale effort to probe the absolute neutrino mass scale with a sensitivity of 0.2 eV (90% confidence level), via a precise measurement of the endpoint spectrum of tritium β-decay. This work documents several KATRIN commissioning milestones: the complete assembly of the experimental beamline, the successful transmission of electrons from three sources through the beamline to the primary detector, and tests of ion transport and retention. In the First Light commissioning campaign of autumn 2016, photoelectrons were generated at the rear wall and ions were created by a dedicated ion source attached to the rear section; in July 2017, gaseous 83mKr was injected into the KATRIN source section, and a condensed 83mKr source was deployed in the transport section. In this paper we describe the technical details of the apparatus and the configuration for each measurement, and give first results on source and system performance. We have successfully achieved transmission from all four sources, established system stability, and characterized many aspects of the apparatus.
The fact that neutrinos carry a non-vanishing rest mass is evidence of physics beyond the Standard Model of elementary particles. Their absolute mass bears important relevance from particle physics to cosmology. In this work, we report on the search for the effective electron antineutrino mass with the KATRIN experiment. KATRIN performs precision spectroscopy of the tritium β-decay close to the kinematic endpoint. Based on the first five neutrino-mass measurement campaigns, we derive a best-fit value of m 2 ν = −0.14 +0.13 −0.15 eV 2 , resulting in an upper limit of m ν < 0.45 eV at 90 % confidence level. With ‡ Institutional status in the KATRIN collaboration has been suspended since February 24, 2022 3 six times the statistics of previous data sets, amounting to 36 million electrons collected in 259 measurement days, a substantial reduction of the background level and improved systematic uncertainties, this result tightens KATRIN's previous bound by a factor of almost two.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.