Intense and purified radioactive beam of post-accelerated 14 O was used to study the low-lying states in the unbound 15 F nucleus. Exploiting resonant elastic scattering in inverse kinematics with a thick target, the second excited state, a resonance at E R =4.757(6)(10) MeV with a width of Γ=36(5)(14) keV was measured for the first time with high precision. The structure of this narrow above-barrier state in a nucleus located two neutrons beyond the proton drip line was investigated using the Gamow Shell Model in the coupled channel representation with a 12 C core and three valence protons. It is found that it is an almost pure wave function of two quasi-bound protons in the 2s 1/2 shell.
To investigate the behavior of the N = 14 neutron gap far from stability with a neutron-sensitive probe, proton elastic and 2(1)+ inelastic scattering angular distributions for the neutron-rich nucleus 22O were measured using the MUr à STrip detector array at the Grand Accélérateur National d'Ions Lourds facility. A deformation parameter beta(p,p') = 0.26 +/- 0.04 is obtained for the 2(1)+ state, much lower than in 20O, showing a weak neutron contribution to this state. A microscopic analysis was performed using matter and transition densities generated by continuum Skyrme-Hartree-Fock-Bogoliubov and quasiparticle random phase approximation calculations, respectively. The ratio of neutron to proton contributions to the 2(1)+ state is found close to the N/Z ratio, demonstrating a strong N = 14 shell closure in the vicinity of the neutron drip line.
174Yb(3He,αγ )173Yb* and 174Yb(3He,pγ )176Lu*, respectively. For the first time, the gamma-decay probabilities have been obtained with two independent experimental methods based on the use of C6D6 scintillators and Germanium detectors. Our results for the radiative-capture cross sections are several times higher than the corresponding neutron-induced data. To explain these differences, we have used our gamma-decay probabilities to extract rather direct information on the spin distributions populated in the transfer reactions used. They are about two times wider and the mean values are 3 to 4 ¯h higher than the ones populated in the neutron-induced reactions. As a consequence, in the transfer reactions neutron emission to the ground and first excited states of the residual nucleus is strongly suppressed and gamma-decay is considerably enhanced
We investigated the 238 U(d,p) reaction as a surrogate for the n + 238 U reaction. For this purpose we measured for the first time the gamma-decay and fission probabilities of 239 U* simultaneously and compared them to the corresponding neutron-induced data. We present the details of the procedure to infer the decay probabilities, as well as a thorough uncertainty analysis, including parameter correlations. Calculations based on the continuum-discretized coupledchannels method and the distorted-wave Born approximation (DWBA) were used to correct our data from detected protons originating from elastic and inelastic deuteron breakup. In the region where fission and gamma emission compete, the corrected fission probability is in agreement with neutron-induced data, whereas the gamma-decay probability is much higher than the neutroninduced data. We have performed calculations of the decay probabilities with the statistical model and of the average angular momentum populated in the 238 U(d,p) reaction with the DWBA to interpret these results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.