Abstract-In this paper, we address the problem of identifying convolutive channels using a Gaussian maximum-likelihood (ML) approach when short training sequences (possibly shorter than the channel impulse-response length) are periodically inserted in the transmitted signal. We consider the case where the channel is quasi-static (i.e., the sampling period is several orders of magnitude smaller than the coherence time of the channel). Several training sequences can thus be used in order to produce the channel estimate. The proposed method can be classified as semiblind and exploits all channel-output samples containing contributions from the training sequences (including those containing contributions from the unknown surrounding data symbols). Experimental results show that the proposed method closely approaches the Cramer-Rao bound and outperforms existing trainingbased methods (which solely exploit the channel-output samples containing contributions from the training sequences only). Existing semiblind ML methods are tested as well and appear to be outperformed by the proposed method in the considered context. A major advantage of the proposed approach is its computational complexity, which is significantly lower than that of existing semiblind methods.Index Terms-Block transmission, maximum-likelihood (ML) estimation, stationary multipath channel, training sequence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.