Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background Early postnatal exposure to general anesthetics may interfere with brain development. We tested the hypothesis that isoflurane causes a lasting disruption in myelin development via actions on the mammalian target of rapamycin pathway. Methods Mice were exposed to 1.5% isoflurane for 4 h at postnatal day 7. The mammalian target of rapamycin inhibitor, rapamycin, or the promyelination drug, clemastine, were administered on days 21 to 35. Mice underwent Y-maze and novel object position recognition tests (n = 12 per group) on days 56 to 62 or were euthanized for either immunohistochemistry (n = 8 per group) or Western blotting (n = 8 per group) at day 35 or were euthanized for electron microscopy at day 63. Results Isoflurane exposure increased the percentage of phospho-S6–positive oligodendrocytes in fimbria of hippocampus from 22 ± 7% to 51 ± 6% (P < 0.0001). In Y-maze testing, isoflurane-exposed mice did not discriminate normally between old and novel arms, spending equal time in both (50 ± 5% old:50 ± 5% novel; P = 0.999), indicating impaired spatial learning. Treatment with clemastine restored discrimination, as evidenced by increased time spent in the novel arm (43 ± 6% old:57 ± 6% novel; P < 0.001), and rapamycin had a similar effect (44 ± 8% old:56 ± 8% novel; P < 0.001). Electron microscopy shows a reduction in myelin thickness as measured by an increase in g-ratio from 0.76 ± 0.06 for controls to 0.79 ± 0.06 for the isoflurane group (P < 0.001). Isoflurane exposure followed by rapamycin treatment resulted in a g-ratio (0.75 ± 0.05) that did not differ significantly from the control value (P = 0.426). Immunohistochemistry and Western blotting show that isoflurane acts on oligodendrocyte precursor cells to inhibit both proliferation and differentiation. DNA methylation and expression of a DNA methyl transferase 1 are reduced in oligodendrocyte precursor cells after isoflurane treatment. Effects of isoflurane on oligodendrocyte precursor cells were abolished by treatment with rapamycin. Conclusions Early postnatal exposure to isoflurane in mice causes lasting disruptions of oligodendrocyte development in the hippocampus via actions on the mammalian target of rapamycin pathway.
Persistent post-surgical pain (PPSP) is a chronic pain condition, often with neuropathic features, that occurs in approximately 20% of children who undergo surgery. The biological basis of PPSP has not been elucidated. Anesthetic drugs can have lasting effects on the developing nervous system, although the clinical impact of this phenomenon is unknown. Here, we used a mouse model to test the hypothesis that early developmental exposure to isoflurane causes cellular and molecular alteration in the pain perception circuitry that causes a predisposition to chronic, neuropathic pain via a pathologic upregulation of the mammalian target of the rapamycin (mTOR) signaling pathway. Mice were exposed to isoflurane at postnatal day 7 and select cohorts were treated with rapamycin, an mTOR pathway inhibitor. Behavioral tests conducted 2 months later showed increased evidence of neuropathic pain, which did not occur in rapamycin-treated animals. Immunohistochemistry showed neuronal activity was chronically increased in the insular cortex, anterior cingulate cortex, and spinal dorsal horn, and activity was attenuated by rapamycin. Immunohistochemistry and western blotting (WB) showed a co-incident chronic, abnormal upregulation in mTOR activity. We conclude that early isoflurane exposure alters the development of pain circuits and has the potential to contribute to PPSP and/or other pain syndromes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.