Background Priming of seed prior chilling is regarded as one of the methods to promote seeds germination, whole plant growth, and yield components. The application of biostimulants was reported as beneficial for protecting many plants from biotic or abiotic stresses. Their value was as important to be involved in improving the growth parameters of plants. Also, they were practiced in the regulation of various metabolic pathways to enhance acclimation and tolerance in coriander against chilling stress. To our knowledge, little is deciphered about the molecular mechanisms underpinning the ameliorative impact of biostimulants in the context of understanding the link and overlap between improved morphological characters, induced metabolic processes, and upregulated gene expression. In this study, the ameliorative effect(s) of potassium silicate, HA, and gamma radiation on acclimation of coriander to tolerate chilling stress was evaluated by integrating the data of growth, yield, physiological and molecular aspects. Results Plant growth, yield components, and metabolic activities were generally diminished in chilling-stressed coriander plants. On the other hand, levels of ABA and soluble sugars were increased. Alleviation treatment by humic acid, followed by silicate and gamma irradiation, has notably promoted plant growth parameters and yield components in chilling-stressed coriander plants. This improvement was concomitant with a significant increase in phytohormones, photosynthetic pigments, carbohydrate contents, antioxidants defense system, and induction of large subunit of RuBisCO enzyme production. The assembly of Toc complex subunits was maintained, and even their expression was stimulated (especially Toc75 and Toc 34) upon alleviation of the chilling stress by applied biostimulators. Collectively, humic acid was the best the element to alleviate the adverse effects of chilling stress on growth and productivity of coriander. Conclusions It could be suggested that the inducing effect of the pretreatments on hormonal balance triggered an increase in IAA + GA3/ABA hormonal ratio. This ratio could be linked and engaged with the protection of cellular metabolic activities from chilling injury against the whole plant life cycle. Therefore, it was speculated that seed priming in humic acid is a powerful technique that can benefit the chilled along with non-chilled plants and sustain the economic importance of coriander plant productivity.
Sesame plants were sprayed with different concentrations of boron solution at 20, 30 and 40 ppm at different stages of plant growth (1, 2 and 3 months). Comparing the treated plants with untreated controls, the obtained results showed that spraying sesame plants with boron (B) solutions improves their growth and yields. Treating plants with boron solution at 20 ppm gave the highest results in growth criteria as compared with corresponding control or plants treated with higher boron solutions (30 and 40 ppm). Moisture and oil percentages were nonsignificantly changed by the different boron concentrations. The highest oil viscosity was recorded at a boron concentration of 30 ppm. Fatty acids were decreased by the effect of boron spray. A remarkable increase in the amino acid content of the plants was observed as a result of treatments with boron solutions, especially in the plants treated at 40 ppm. Spraying sesame plants with boron decreased the Fe, K, Mg and P contents, whereas the lowest concentration of boron (20 ppm) increased Ca and the highest concentration (40 ppm) increased Cl and Na.
SUMMARY:The present work aims to improve the quantity and quality of seeds and/or seed oil by using low doses of radiation. Sesame seeds were exposed to γ-rays at levels of 30, 60 and 90 Gy. The results show that 30, 60 and 90 Gy doses activated most of growth and yield parameters significantly (weight of plant, number of capsules, weight of capsules/plant and weight of seeds/plant), with 60 Gy being the best dose. With regard to the total oil percentage in the produced crops, few changes have been observed, which did not reach the level of significance. The amount of unsaturated fatty acid (18:1, omega 9) was increase by 10.5% at a 30 Gy dose followed by 60 Gy (1.1%). The total of amino acid content showed that 30 Gy dose recorded the highest value (350.4 mg·g ). The values of phosphorus, potassium magnesium and iron which represent the major minerals in sesame seeds were increased in the irradiated samples.KEYWORDS: Amino acids; Fatty acid; γ-rays; Minerals; Oil content; Sesame RESUMEN: Influencia de tratamientos con rayos gamma en la presiembra sobre el crecimiento, rendimiento y algunos componentes químicos de Sesamum indicum L. El presente trabajo tiene como objetivo mejorar la cantidad y la calidad de las semillas y/o aceite de semillas mediante el uso de dosis bajas de radiación. Las semillas de sésamo se expusieron a rayos γ-a niveles de 30, 60 y 90 Gy. Los resultados mostraron que las dosis de 30, 60 y 90 Gy activan significativamente la mayor parte de los parámetros de crecimiento y rendimiento (peso de la planta, número de cápsulas, peso de cápsulas/planta y el peso de semillas/planta), siendo 60 Gy la mejor dosis. Con respecto al porcentaje total de aceite producido en los cultivos, se han observado pequeños cambios, pero no se alcanzó el nivel de significación. La cantidad de ácido graso insaturado (18: 1, omega 9) fue 10,5% que aumentó con dosis de 30 Gy seguido de 60 Gy (1,1%). El contenido total de aminoácidos mostró que dosis de 30 Gy registró el valor más alto (350,4 mg·g ). Los valores de fósforo, magnesio, potasio y hierro, que son los principales minerales en las semillas de sésamo incrementaron en las muestras irradiadas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.