A simple and sensitive procedure for simultaneous determination of arsenate, arsenite, monomethylarsonate and dimethylarsinate (DMA) ions in waters using CZE with chemical derivatization in situ and UV-detection at 250 nm was developed. The separation was performed in a fused-silica capillary using solution containing sodium molybdate and sodium perchlorate as electrolyte. Molybdate forms heteropolycomplexes with arsenic species in low acidic media, while sodium perchlorate masks silicate ion. The analysis conditions were optimized; the best results were achieved with the electrolyte consisting of 10 mM Na(2)MoO(4) and 10 mM NaClO(4) at pH 3.0 using negative voltage and pneumatic injection of the sample. Nevertheless, the signal of arsenite ion was not detected, probably because of its instability. Arsenite ion was quantified as a difference between arsenate ion contents after and before oxidation by bromine water. The detection limits for the fresh water at the level of 5.0 microg/L for As(III) and As(V), 16 microg/L for DMA and 20 microg/L for MMA were achieved. The reproducibility varied in the range of 0.06-0.25 relative units. To reduce the interferences of the sample salinity an addition of organic substances and isotachophoretic effect were used.
Arsenic aromatic compounds including p‐arsanylic acid (pASA) are still widely used in a number of countries as the feed additives in animal breeding resulting in its entering the environment. Under the influence of oxidizing agents or UV radiation, pASA undergoes transformations leading to generation of inorganic arsenic species that are more mobile and toxic than organic ones. On the one hand, an approach based on the treatment of contaminated waters by UV irradiation seems perspective for their detoxification, but the feasibility of this approach depends on the composition of the products forming as a result of photodegradation.
In the present work, a CZE was applied for the study of the pASA degradation process during stationary (308 nm) photolysis in the presence of Fe(III)‐oxalate complex. A developed assay allowed controlling the parent compounds and also As‐containing products of pASA degradation, presented mainly by arsenate and arsenite ions. It was found that the main inorganic derivatives of the pASA photolytic conversions are presented by arsenate and arsenite ions whose ratio depends on the initial amount of pASA and reaction conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.