We describe up to finite coverings causal flat affine complete Lorentzian manifolds such that the past and the future of any point are closed near this point. We say that these manifolds are strictly causal. In particular, we prove that their fundamental groups are virtually abelian. In dimension 4, there is only one, up to a scaling factor, strictly causal manifold which is not globally hyperbolic. For a generic point of this manifold, either the past or the future is not closed and contains a lightlike straight line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.