The significance of the spectral composition of light for growth and other physiological functions of plants moved to the focus of “plant science” soon after the discovery of photosynthesis, if not earlier. The research in this field recently intensified due to the explosive development of computer-controlled systems for artificial illumination and documenting photosynthetic activity. The progress is also substantiated by recent insights into the molecular mechanisms of photo-regulation of assorted physiological functions in plants mediated by photoreceptors and other pigment systems. The spectral balance of solar radiation can vary significantly, affecting the functioning and development of plants. Its effects are evident on the macroscale (e.g., in individual plants growing under the forest canopy) as well as on the meso- or microscale (e.g., mutual shading of leaf cell layers and chloroplasts). The diversity of the observable effects of light spectrum variation arises through (i) the triggering of different photoreceptors, (ii) the non-uniform efficiency of spectral components in driving photosynthesis, and (iii) a variable depth of penetration of spectral components into the leaf. We depict the effects of these factors using the spectral dependence of chloroplast photorelocation movements interlinked with the changes in light penetration into (light capture by) the leaf and the photosynthetic capacity. In this review, we unfold the history of the research on the photocontrol effects and put it in the broader context of photosynthesis efficiency and photoprotection under stress caused by a high intensity of light.
Parameters of chlorophyll fluorescence induction (CFI) are widely used for assessment of the physiological state of higher plant leaves in biochemical, physiological, and ecological studies and in agricultural applications. In this work we have analyzed data on variability of some CFI parameters - ΦPSII(max) = Fv/Fm (relative value of variable fluorescence), qNPQ (non-photochemical quenching coefficient), RFd ("vitality index") - in autumnal leaves of ten arboreous plant species of the temperate climatic zone. The correlation between the chlorophyll content in the leaves and fluorescence parameters characterizing photosynthetic activity is shown for two representative species, the small-leaved linden Tilia cordata and the rowan tree Sorbus aucuparia. During the period of mass yellowing of the leaves, the ΦPSII(max) value can be used as an adequate characteristic of their photochemical activity, while in summer the qNPQ or RFd values are more informative. We have established a correlation between the ΦPSII(max) value, which characterizes the maximal photochemical activity of the photosystem II, and "chromaticity coordinates" of a leaf characterizing its color features. The chromaticity coordinates determined from the optical reflection spectra of the leaves serve as a quantitative measure of their hues, and this creates certain prerequisites for a visual expert assessment of the physiological state of the leaves.
The kinetics of irradiation-induced changes in leaf optical transparence (ΔT) and non-photochemical quenching (NPQ) of chlorophyll fluorescence in Tradescantia fluminensis and T. sillamontana leaves adapted to different irradiance in nature was analyzed. Characteristic times of a photoinduced increase and a dark decline of ΔT in these species were 12 and 20 min, respectively. The ΔT was not confirmed to be the main contributor to the observed middle phase of NPQ relaxation kinetics (τ = 10-28 min). Comparison of rate of photoinduced increase in ΔT and photosystem II quantum yield recovery showed that the former did not affect the tolerance of the photosynthetic apparatus (PSA) to irradiances up to 150 µmol PAR·m·s. Irradiance tolerance correlated with the rate of "apparent NPQ" induction. Considering that the induction of apparent NPQ involves processes significantly faster than ΔT, we suggest that the photoprotective mechanism induction rate is crucial for tolerance of the PSA to moderate irradiance during the initial stage of light acclimation (first several minutes upon the onset of illumination).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.