We describe an original multisectional quadrupole ion trap aimed to realize nuclear frequency standard based on the unique isomer transition in thorium nucleus. It is shown that the system effectively operates on Th, Th and Th ions produced by laser ablation of metallic thorium-232 target. Laser intensity used for ablation is about 6 GW/cm. Via applying a bias potential to every control voltage including the RF one, we are able not only to manipulate ions within the energy range as wide as 1-500 eV but to specially adjust trap potentials in order to work mainly with ions that belong to energy distribution maximum and therefore to effectively enhance the number of trapped ions. Measurement of energy distributions of Th, Th, Th ions obtained by laser ablation allows us to define optimal potential values for trapping process. Observed number of ions inside trap in dependence on trapping time is found to obey an unusually slow - logarithmic decay law that needs more careful study.
There is a growing need for the development of atomic and nuclear frequency standards because of the important contribution of methods for precision time and frequency measurements to the development of fundamental science, technology and the economy. It is also conditioned by their potential use in optical clocks and quantum logic applications. It is especially important to develop a universal method that could allow one to use ions of most elements effectively (including ones that are not easily evaporated) proposed for the above-mentioned applications. A linear quadrupole ion trap for the optical spectroscopy of electron and nuclear transitions has been developed and evaluated experimentally. An ion source construction is based on an ultra-high vacuum evaporator in which a metal sample is subjected to an electron beam of energy up to 1 keV, resulting in the appearance of gaseous atoms and ions of various charge state.The linear ion trap consists of five successive quadrupole sections including an entrance quadrupole section, quadrupole mass filter, quadrupole ion guide, ion-trap section and exit quadrupole section. The same radiofrequency but a different direct current voltage feeds the quadrupole sections. The instrument allows the mass-and energy-selected trapping of ions from ion beams of various intensities and their localization in the area of laser irradiation. The preliminary results presented show that the proposed instrument and methods allow one to produce effectively up to triply charged thorium ions as well as to trap ions for future spectroscopic study. The instrument is proposed for future use in optical clocks and quantum logic application development.
We consider an experiment on trapping and laser cooling of Th ions in a linear Paul trap in the presence of undesirable impurities such as ions of the radioactive isotope Th. We suggest a method of separating these impurities by means of selective laser cooling utilizing the isotope shift of cooling transitions in Th and Th ions. According to our estimation, the isotope shift is equal to 3.4 GHZ and makes laser separation of these isotopes possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.