The Peng-Robinson equation of state (EoS) was adapted using group contribution methods to model asphaltene precipitation from solutions of toluene and an n-alkane and from n-alkane diluted bitumens. A liquid-liquid equilibrium was assumed between a primary liquid phase and a second dense asphaltene phase. Bitumen was characterized in terms of solubility fractions: saturates, aromatics, resins, and asphaltenes. Critical properties of the saturates, aromatics, and resins were determined that fit their measured densities and compared well with existing critical property correlations. The saturate and aromatic critical properties were also tuned to fit asphaltene precipitation data from solutions of the saturate and toluene or the aromatic and heptane. Asphaltenes were divided into fractions of different molar masses using a gamma distribution function. EoS parameters for asphaltenes were determined that fit the measured densities, fit precipitation data for mixtures of asphaltenes, toluene, and heptane, and compared well with existing critical property correlations. The model successfully fitted and predicted the onset and amount of precipitation over a broad range of compositions, temperatures from 0 to 100 °C, and pressures up to 7 MPa. The model results were within the error of the measurements except for high dilutions with n-pentane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.