Partial detachment is the desired regime for the baseline burning plasma scenario in ITER and next-step devices, as it allows to convert the majority of the energy carried by charged particles through the scrape-off-layer (SOL) is dissipated and thus deposition of localized heat fluxes in the divertor region is avoided. The COMPASS tokamak is equipped with an open divertor and has a relatively short connection length, both factors being unfavourable for access to detachment. As such, it only allows to approach naturally detached operation at very high line-averaged densities (> 10 20 m −3), which are incompatible e.g. with maintaining the ELMy H-mode regime. In order to achieve the detachment at lower densities, impurities (such as nitrogen) should be injected into the plasma in the divertor region. A series of experiments with impurity injection in the range of 1-9×1020 molecules per second at different locations in the divertor were performed with the aim to cool the plasma and influence the particle and heat transport onto the divertor targets and provoke partial detachment. Previously reported results [M. Komm et al, EPS 2017, P1.118] were largely extended by injection of nitrogen at the outer divertor target.
The reduction of the incident heat flux onto the divertor will be a necessity for the future thermonuclear reactors. Impurity seeding is recognized as an efficient way to achieve the partial detachment regime, which allows to dissipate a large fraction of power flux by radiation. This paper presents a heat flux real-time feedback system (RTFS) based on impurity seeding controlled by a combined ball-pen and Langmuir probe divertor array in the COMPASS tokamak. A number of features of the system have been studied, such as the type of impurity, seeding location, constants used in the real-time controller and the diagnostic selections. A detailed description of the designed RTFS and the results of the implementation are presented. The findings confirm the applicability of the RTFS for reduction and control of the divertor heat fluxes. Another important implication of this research is the ability of installing such systems in next-step devices.
Sawtooth instability is characterized by fast redistribution of the plasma core temperature during a crash phase. The radial velocity of the plasma core during the crash phases has been measured for the first time with ECEI diagnostic. The measurements have been compared with nonlinear two-fluid MHD simulation. The comparison reveals good qualitative and quantitative agreement, which indicates that two-fluid effects (inertia and pressure gradient of electrons) are sufficient for the correct prediction of the experimental results. Contrarily, the crash time of the Kadomtsev model, which is based on a single-fluid picture of magnetic reconnection, disagrees completely with the experimental results.
The paper presents the results of an experimental study to investigate the coolant interaction in adjoining fuel assemblies in the VVER reactor core composed of TVSA-T and upgraded TVSA FAs. The processes of the in-core coolant flow were simulated in a test wind tunnel. The experiments were conducted using models representing different portions of the VVER reactor core fuel bundle and consisted in measuring the radial and axial airflow velocities in representative areas within the FAs and in the interassembly space. The results of the experiments can be translated to the full-scale conditions of the coolant flow with the use of the fluid dynamics simulation theory. The measurements were performed using a five-channel pressure-tube probe. The coolant flow pattern in different portions of the fuel bundle is represented by distribution diagrams and distribution maps for the radial and axial velocity vector components in the representative areas of the models. An analysis for the spatial distribution of the radial and axial velocity vector components has made it possible to obtain a detailed pattern of the coolant flow about the FA spacer, mixing and combined spacer grids of different designs. The accumulated database for the coolant flow in FAs of different designs forms the basis for the engineering justification of the VVER reactor core reliability and serviceability. The investigation results for the coolant interaction in adjoining TVSA FAs of different designs have been adopted for the practical use at JSC Afrikantov OKBM to estimate the heat-engineering reliability of the VVER reactor cores and have been included in the database for verification of computational fluid dynamics (CFD) codes and detailed by-channel calculation codes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.