Cerivastatin reduced inflammation, cell proliferation, and iNOS induction, which led to a reduction in cellular damage. Our findings suggest that 3-hydroxy-3-methylglutaryl coenzyme (HMG-CoA) reductase inhibition ameliorates Ang II-induced end-organ damage. We suggest that these effects were independent of cholesterol.
This paper describes an approach to unidirectional coupled CFD–FEM analysis developed at ABB Turbo Systems Ltd. Results of numerical investigations concerning the vibration behavior of an axial turbocharger turbine are presented. To predict the excitation forces acting on the rotating blades, the time-resolved two-dimensional coupled stator–rotor flow field of the turbine stage was calculated. The unsteady pressure, imposed on the airfoil contour, leads to circumferentially nonuniform and pulsating excitation forces acting on the rotating bladed disk. A harmonic transformation of the excitation forces into the rotating coordinate system of a single blade was elaborated and the complex Fourier amplitudes were determined. The bladed rotor was modeled by a single symmetric segment with complex circumferential boundary conditions. With respect to different nodal diameter numbers, free vibration analyses of the disk assembly were then effectively performed. For calculated resonance conditions, the steady-state responses of the turbocharger bladed disk were computed. By using this coupled CFD–FEM analysis, the dynamic loading of the turbine blades can be determined in the design process.
Polydisperse sprays in complex three dimensional flow systems are important in many technical applications. Numerical descriptions of sprays are used to achieve a fast and accurate prediction of complex two-phase flows.
The Eulerian and Lagrangian methods are two essentially different approaches for the modeling of disperse two-phase flows. Both methods have been implemented into the same CFD - package which is based on a 3D body-fitted Finite Volume method. Considering sprays represented by a small number of droplet starting conditions, the Eulerian method is clearly superior in terms of computational efficiency. However, with respect to complex polydisperse sprays, the Lagrangian technique gives a higher accuracy. In addition, Lagrangian modeling of secondary effects such as spray-wall interaction enhances the physical description of the two-phase flow. Therefore, in the present approach the Eulerian and the Lagrangian methods have been combined in a hybrid method. The Eulerian method is used to determine a preliminary solution of the two-phase flow field. Subsequently, the Lagrangian method is employed to improve the accuracy of the first solution using detailed sets of initial conditions. Consequently, this combined approach improves the overall convergence behavior of the simulation.
In the final section, the advantages of each method are discussed when predicting an evaporating spray in an intake manifold of an IC-engine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.