We present absolute optical emission spectra in the 110-400 nm regions from radio-frequency-driven (13.56 MHz) hollow slot microplasmas operating in open air at atmospheric pressure. The term microplasma in our research refers to inter-electrode separation (100-600 µm) only, as electrode lengths are scalable from 1 to 30 cm. This creates an extended slot plasma and an associated afterglow plume as described herein. Spectra are presented for gas flows through the microelectrodes of argon and helium with small admixtures of hydrogen and nitrogen into open air. The spectra are discussed in terms of species origin and magnitude of the dominant emission lines. Atomic O and N lines dominate the 110-200 nm region, whereas, in the 200-400 nm region, NO, N 2 , N + 2 and NH molecular lines are strongest. The role of the N 2 (A 3 + u ) state in the open air microplasmas is discussed and the second positive system of molecular nitrogen (N 2 (C 3 g -B 3 g )), is used to measure the rotational (gas) temperature. Finally, we compare the efficiency and magnitude of light emission from the open air microplasmas with values attainable from commercial sealed mercury lamps in the UVB and UVC regions.
We report electrical properties of radio frequency (RF)-driven hollow slot microplasmas operating in open air but with uniform luminous discharges at RF current densities of the order of A cm −2 . We employ interelectrode separations of 100-600 µm to achieve this open-air operation but because the linear slot dimension of our electrode designs are of extended length, we can achieve, for example, open-air slot shaped plasmas 30 cm in length. This creates a linear plasma source for wide area plasma driven surface treatment applications. RF voltages at frequencies of 4-60 MHz are applied to an interior electrode to both ignite and sustain the plasma between electrodes. The outer slotted electrode is grounded. Illustrative absolute emission of optical spectra from this source is presented in the region from 100 to 400 nm as well as total oxygen radical fluxes from the source. We present both RF breakdown and sustaining voltage measurements as well as impedance values measured for the microplasmas, which use flowing rare gas in the interelectrode region exiting into open air. The requirement for rare gas flow is necessary to get uniform plasmas of dimensions over 30 cm, but is a practical disadvantage. In one mode of operation we create an out-flowing afterglow plasma plume, which extends 1-3 mm from the grounded open slot allowing for treatment of work pieces placed millimetres away from the grounded electrode. This afterglow configuration also allows for lower gas temperatures impinging on substrates, than the use of active plasmas. Work pieces are not required to be part of any electrical circuit, bringing additional practical advantages. We present a crude lumped parameter equivalent circuit model to analyse the effects of changing RF sheaths with frequency of excitation and applied RF current to better understand the relative roles of sheath and bulk plasma behaviour observed in electrical characteristics. Estimates of the bulk plasma densities are also provided. Finally, we present results of afterglow plasma based bacteria inactivation studies (Escherichia coli, Bacillus atrophaeus and B. atrophaeus spores) in which we employ the flowing afterglow plume from a hollow slot microplasma device rather than the active plasma itself, which is fully contained between electrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.