Electrical charges on fabrics, films, and membrane materials are of scientific interest for material development and performance. In many applications, available instruments do not have sufficient sensitivity to detect variations in charge needed for scientific investigations. This paper discusses the design and construction of a custom-made Faraday bucket for measuring the charge of electrospun polyvinylidene fluoride fiber mats of sizes 3 × 3 cm2 and 4 × 4 cm2. An electrometer directly measured the change in the voltage potentials of the inner conductor of the Faraday bucket due to the insertion of fiber mat samples. The measured potentials were converted to electrical charge by modeling the Faraday bucket as a source-free resistance–capacitance circuit. The results show that the Faraday bucket was sufficiently sensitive and measured differences in the potential and charge of the fiber mats due to variations in sample size (or mass), and it detected differences in charge depending on whether the sample was taken from the center or the edges of the electrospun fiber mats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.