Following the interaction of superintense, short pulse lasers and plasmas, ions can be accelerated to velocities sufficient to drive nuclear fusion reactions, in particular, by the process of Coulomb explosion of clusters [T. Ditmire, Nature (London) 398, 491 (1999)]]. We show here how short bursts of neutrons can be produced using a jet of low-density deuterated methane clusters. Ion velocity distributions were simultaneously measured by a Thomson parabola mass spectrometer, demonstrating deuteron energies up to 120 keV. We show that, in such conditions, nuclear fusion will occur not only in the hot plasma core, but also in the cold outer region by collision processes.
We describe an experimental method to probe the adsorption of water at the surface of isolated, substrate-free TiO2 nanoparticles (NPs) based on soft X-ray spectroscopy in the gas phase using synchrotron radiation. To understand the interfacial properties between water and TiO2 surface, a water shell was adsorbed at the surface of TiO2 NPs. We used two different ways to control the hydration level of the NPs: in the first scheme, initially solvated NPs were dried and in the second one, dry NPs generated thanks to a commercial aerosol generator were exposed to water vapor. XPS was used to identify the signature of the water layer shell on the surface of the free TiO2 NPs and made it possible to follow the evolution of their hydration state. The results obtained allow the establishment of a qualitative determination of isolated NPs’ surface states, as well as to unravel water adsorption mechanisms. This method appears to be a unique approach to investigate the interface between an isolated nano-object and a solvent over-layer, paving the way towards new investigation methods in heterogeneous catalysis on nanomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.