We demonstrate the coupling of bright and dark surface lattice resonances (SLRs), which are collective Fano resonances in 2D plasmonic crystals. As a result of this coupling, a frequency stop gap in the dispersion relation of SLRs is observed. The different field symmetries of the low-and high-frequency SLR bands lead to pronounced differences in their coupling to free-space radiation. Standing waves of very narrow spectral width compared to localized surface-plasmon resonances are formed at the highfrequency band edge, while subradiant damping onsets at the low-frequency band edge, leading the resonance into darkness. We introduce a coupled-oscillator analog to the plasmonic crystal, which serves to elucidate the physics of the coupled plasmonic resonances and which is used to estimate very high quality factors for SLRs. DOI: 10.1103/PhysRevX.1.021019 Subject Areas: Nanophysics, PlasmonicsMetallic nanoparticles supporting surface-plasmon resonances allow light to be localized in nanoscale volumes, thereby opening exciting possibilities such as nanoscale control of emitters [1], large electromagnetic enhancements [2], and nonlinear nano-optics [3]. Much attention has been given to localized surface-plasmon resonances (LSPRs), which arise in individual particles when their conduction electrons are coherently driven by an electromagnetic field. Although localized surface plasmons in neighbor particles may mutually couple, their resonances are, in general, severely broadened due to strong radiative damping. Hence, LSPRs exhibit low quality factors Q. A recent development in nanoplasmonics deals with collective resonances in periodic arrays of metallic nanostructures, or plasmonic crystals. Such arrays support surface lattice resonances (SLRs), which are collective resonances mediated by diffractive coupling of localized plasmons. This coupling occurs near the critical frequency at which a diffraction order is radiating in the plane of the array, i.e., at the Rayleigh anomaly. SLRs were introduced by Carron [4], and the interest in this phenomenon was revived by Schatz and co-workers with a series of works on 1D and 2D arrays [5,6]. However, the experimental observation of SLRs remained elusive for many years [7]. Recent advances in nanofabrication and in the understanding of SLRs have allowed for their observation in periodic arrays of nanostructures with different geometries [8][9][10][11][12][13]. In contrast with LSPRs, SLRs possess much higher Q's, and the associated polaritons can propagate over tens of unit cells in the plasmonic crystal [12]. The relevance of SLRs for enhanced, directional, and polarized light emission [11,14] and sensing [15] has been recently demonstrated. Although the coupling of surface modes in periodic metallic structures has attracted much interest [16][17][18][19], especially for its connection with frequency stop gaps [20], coupled SLRs have not yet been discussed.In this paper, we demonstrate the mutual coupling of SLRs and the formation of a frequency stop gap in the dispersion ...
We demonstrate experimentally that arrays of base-tapered InP nanowires on top of an InP substrate form a broad band and omnidirectional absorbing medium. These characteristics are due to the specific geometry of the nanowires. Almost perfect absorption of light (higher than 97%) occurs in the system. We describe the strong optical absorption by finite-difference time-domain simulations and present the first study of the influence of the geometry of the nanowires on the enhancement of the optical absorption by arrays. Cylindrical nanowires present the highest absorption normalized to the volume fraction of the semiconductor. The absolute absorption in layers of conical nanowires is higher than that in cylindrical nanowires but requires a larger volume fraction of semiconducting material. Base-tapered nanowires, with a cylindrical top and a conical base, represent an intermediate geometry. These results set the basis for an optimized optical design of nanowire solar cells.
In this Letter, we show that the energy equivalent to that incident on a 4:7 m wide strip can be squeezed through a 50 nm wide slit in a metal film surrounded by grooves. This corresponds to a transmission efficiency of 9400%, which can be even further enhanced by increasing the number of grooves. We use the phase of the magnetic field to explain that the ideal slit-to-groove distance is just over half the plasmon wavelength. In addition, we also optimize the groove depth and width. Such optimized transmission enhancement is very important for near-field devices.
http://www.jeos.org/index.php/jeos_rp/article/view/07022We present a comparison among several fully-vectorial methods applied to a basic scattering problem governed by the physics of the electromagnetic interaction between subwavelength apertures in a metal film. The modelled structure represents a slit-groove scattering problem in a silver film deposited on a glass substrate. The benchmarked methods, all of which use in-house developed software, include a broad range of fully-vectorial approaches from finite-element methods, volume-integral methods, and finite-difference time domain methods, to various types of modal methods based on different expansion techniques
Abstract:The excitation of surface plasmons by subwavelength slits in metal films is studied using a rigorous diffraction model. It is shown that the plasmon is launched by a slit in antiphase with the incident magnetic field. This is true independent of slit width and of the metal used. Using this phase information, maxima and minima in transmission are explained in the case of two and more slits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.