CCQM-K120.a comparison involves preparing standards of carbon dioxide in air which are fit for purpose for the atmospheric monitoring community, with stringent requirements on matrix composition and measurement uncertainty of the CO2 mole fraction. This represents an analytical challenge and is therefore considered as a Track C comparison. The comparison will underpin CMC claims for CO2 in air for standards and calibrations services for the atmospheric monitoring community, matrix matched to real air, over the mole fraction range of 250 μmol/mol to 520 μmol/mol. CCQM-K120.b comparison tests core skills and competencies required in gravimetric preparation, analytical certification and purity analysis. It is considered as a Track A comparison. It will underpin CO2 in air and nitrogen claims in a mole fraction range starting at the smallest participant's reported expanded uncertainty and ending at 500 mmol/mol. Participants successful in this comparison may use their result in the flexible scheme and underpin claims for all core mixtures This study has involved a comparison at the BIPM of a suite of 44 gas standards prepared by each of the participating laboratories. Fourteen laboratories took part in both comparisons (CCQM-K120.a, CCQM-K120.b) and just one solely in the CCQM-K120.b comparison. The standards were sent to the BIPM where the comparison measurements were performed. Two measurement methods were used to compare the standards, to ensure no measurement method dependant bias: GC-FID and FTIR spectroscopic analysis corrected for isotopic variation in the CO2 gases, measured at the BIPM using absorption laser spectroscopy. Following the advice of the CCQM Gas Analysis Working Group, results from the FTIR method were used to calculate the key comparison reference values. KEY WORDS FOR SEARCH FTIR, CO2, GC-FID, Carbon dioxide at background level, Carbon dioxide at urban level, Delta Ray, CO2 gas standards Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
We used NDIR for this measurement (Siemens, Ultramat 6E). Configuration of analysis system: gas cylinder-> regulator-> MFC-> NDIR-> response comparison-> results Sample cell flow: 800 mL/min, Reference cell flow: 800 mL/min Cell pressure: 1.94 Kg/cm 3 Calibration Standards: The calibration standards for CCQM-K52 were prepared by gravimetric method including 0.93 %mol/mol of Ar in KRISS. Therefore, the matrix is different from that of coordinating Lab., which does not contain Ar. All source gases were analyzed impurities for purity analysis. The primary standards with 0.014% overall uncertainty (k=2) are used.
At the highest metrological level, natural gas standards are commonly prepared gravimetrically as PSMs (primary standard mixtures). This international key comparison is a repeat of CCQM-K1e-g. The mixtures concerned contain nitrogen, carbon dioxide and the alkanes up to butane. The only difference with CCQM-K1e-g is the addition of iso-butane to the list. The results usually agree within 1% (or better) with the key comparison reference value. For ethane, nitrogen and carbon dioxide, the agreement is within 0.5% (or better), and for methane within 0.1% (or better) of the KCRV.Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/.The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).
At the highest metrological level, natural gas standards are commonly prepared gravimetrically as PSMs (Primary Standard Mixtures). This international key comparison is a repeat of CCQM-K1e-g. The mixtures concerned contain nitrogen, carbon dioxide and the alkanes up to butane. The only difference from CCQM-K1e-g is the addition of iso-butane to the list. The agreement of the results in this key comparison is very good. For all parameters, with a few exceptions, the results agree within 0.5% (or better) with the key comparison reference value. For methane, the results are generally within 0.1% (or better) of the KCRV.Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/.The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.