The glandular trichomes are developed on the aerial organs of Tussilago farfara ; they produce phenols and terpenoids. Smooth endoplasmic reticulum and leucoplasts are the main organelles of the trichome secretory cells. The aim of this study was to characterise the morphology, anatomy, histochemistry and ultrastructure of the trichomes in Tussilago farfara as well as to identify composition of the secretory products. Structure of trichomes located on the peduncles, bracts, phyllaries, and leaves were studied by light and electron microscopy. The capitate glandular trichomes consist of a multicellular head and a biseriate long stalk. Histochemical tests and fluorescence microscopy reveal phenols and terpenoids in the head cells. During secretory stage, the head cells contain smooth and rough endoplasmic reticulum, Golgi apparatus, diversiform leucoplasts with opaque contents in lamellae, chloroplasts, mitochondria, and microbodies. In the capitate glandular trichomes of T. farfara subcuticular cavity is absent, unlike glandular trichomes in other Asteraceae species. For the first time, content of metabolites in the different vegetative and reproductive organs as well as in the isolated capitate glandular trichomes was identified by GC-MS. Forty-five compounds, including organic acids, sugars, polyols, phenolics, and terpenoids were identified. It appeared that metabolite content in the methanol extracts from peduncles, bracts and phyllaries is biochemically analogous, and similar to the metabolites from leaves, in which photosynthesis happens. At the same time, the metabolites from trichome extracts essentially differ and refer to the above-mentioned secondary substances. The study has shown that the practical value of the aerial organs of coltsfoot is provided with flavonoids produced in the capitate glandular trichomes.
Sample preparation including dehydration and drying of samples is the most intricate part of scanning electron microscopy. Most current sample preparation protocols use critical-point drying with liquid carbon dioxide. Very few studies have reported samples that were dried using chemical reagents. In this study, we used hexamethyldisilazane, a chemical drying reagent, to prepare plant samples. As glandular trichomes are among the most fragile and sensitive surface structures found on plants, we used Millingtonia hortensis leaf samples as our study materials because they contain abundant glandular trichomes. The results obtained using this new method are identical to those produced via critical-point drying.
A wide range of studies have demonstrated that hyperhomocysteinemia is associated with the risk of schizophrenia, but currently available assumptions about the direct involvement of homocysteine (Hcy) in the pathogenesis of schizophrenia are hypothetical. It is possible that in vivo Hcy is only a marker of folate metabolism disturbances (which are involved in methylation processes) and is not a pathogenetic factor per se. Only one study has been conducted in which associations of hyperhomocysteinemia with oxidative stress in schizophrenia (oxidative damage to protein and lipids) have been found, and it has been suggested that the oxidative stress may be induced by the elevated Hcy in schizophrenic patients. But the authors did not study the level of reduced glutathione (GSH), as well as possible causes of hyperhomocysteinemia—disturbances of folate metabolism. The aim of this work is to analyze the association of Hcy levels with the following: (1) redox markers in schizophrenia GSH, markers of oxidative damage of proteins and lipids, and the activity of antioxidant enzymes in blood serum; (2) with the level of folate and cobalamin (В12); and (3) with clinical features of schizophrenia measured using the Positive and Negative Syndrome Scale (PANSS). 50 patients with schizophrenia and 36 healthy volunteers, matched by sex and age, were examined. Hcy in patients is higher than in healthy subjects ( p = 0.0041 ), and this may be due to the lower folate level in patients ( p = 0.0072 ). In patients, negative correlation was found between the level of Hcy both with the level of folate ( ρ = − 0.38 , p = 0.0063 ) and with the level of B12 ( ρ = − 0.36 , p = 0.0082 ). At the same time, patients showed higher levels of oxidative modification of serum proteins ( p = 0.00046 ) and lower catalase (CAT) activity ( p = 0.014 ). However, Hcy is not associated with the studied markers of oxidative stress in patients. In the group of patients with an increased level of Hcy (>10 μmol/l, n = 42 ) compared with other patients ( n = 8 ), some negative symptoms (PANSS) were statistically significantly more pronounced: difficulty in abstract thinking (N5, p = 0.019 ), lack of spontaneity and flow in conversation (N6, p = 0.022 ), stereotyped thinking (N7, p = 0.013 ), and motor retardation (G7, p = 0.050 ). Thus, in patients with schizophrenia, hyperhomocysteinemia caused by deficiency of folate and B12 is confirmed and can be considered a marker of disturbances of vitamin metabolism. The redox imbalance is probably not directly related to hyperhomocysteinemia and is hypothetically caused by other pathological processes or by an indirect effect of Hcy, for example, on the enzymatic antioxidant defence system (CAT activity), which requires further exploration. Further study of the role of Hcy in the pathogenesis of schizophrenia is relevant, since the proportion of patients with hyperhomocysteinemia is high and correlations of its level with negative symptoms of schizophrenia are noted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.