The role of dopaminergic D2 receptor (D2R) autoregulation in dopamine (DA) neurotransmission cannot be overemphasized in cause and progression of disorders associated with complex behaviors. Although previous studies have shown that D2R is structurally and physiologically linked with calcium/calmodulin-dependent kinase II (CaMKIIα), however, the role of calmodulin in the CaMKIIα complex in D2R regulation remains elusive. In this study, using structural biology modeling softwares (iGEMDOCK and CueMol), we have shown the interaction between D2R, CaMKIIα, calmodulin, and DA under varying conditions. The outcomes of this study suggest that CaMKIIα causes a change in DA binding affinity to the D2R receptive site while the detached DA binds to calmodulin to stop the activity of D2R in the D2R-dopaminergic D1 receptor (D1R) heteromer. Ultimately, we concluded that D2R autoregulates to stop its heteromeric combination with D1R. D2R interacts with D1R to facilitate calcium movement that activates calmodulin, then CaMKIIα. The CaMKIIα-calmodulin complex changes the affinity of DA-D2R causing DA to break free and bind with calmodulin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.