SummaryThe effect of hot deformation on fully recrystallized aluminium-copper alloys (Al-4wt%Cu and Al-33wt%Cu) with different volume fractions of CuAl 2 has been studied. The alloys are Zener pinned systems with different superplastic properties. Strain-induced grain growth, observed in both alloys, was quantitatively estimated by means of electron microscopy and EBSD and compared with the rate of static grain growth. Surface marker observations and in situ hotdeformation experiments combined with EBSD were aimed at clarifying the mechanisms responsible for the changes in the deformed microstructures. A sequence of secondary and backscattered electron images and EBSD maps was obtained during in situ SEM deformation with different testing conditions. Overlaying EBSD maps for the Al-4wt%Cu with channelling contrast images showed that grain boundary motion occurred during deformation, creating a layered structure and leading to an increase in size of some grains and shrinkage of others. Of a particular interest are results related to behaviour of CuAl 2 in superplastic Al-33wt%Cu during deformation, including several problems with the use of EBSD in this alloy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.