An urgent need in flexible low-scale gas-chemical technologies for processing and transporting unconventional and remote low-debit gas resources makes it necessary to develop methods for effective low-scale conversion of natural gas into syngas. The paper describes a principally new type of re-former based on the gas-phase conversion of hydrocarbons into syngas in 3D matrix burners, which can be used in many low-scale applications. The effective convective and radiant recuperation of heat of combustion products to the matrix and then to incoming fresh gas, along with the absence of radiation losses in the closed cavity of the matrix, lowers the limit of stable combustion of rich methane−air mixture to an oxygen excess coefficient of α < 0.4. This simple noncatalytic gas-phase process makes it possible to attain H 2 and CO yields very close to thermodynamically equilibrium values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.