Analytical expressions are derived and computational algorithms are constructed for retrieving optical-field phase distribution under strong scintillation. The input data for the phase reconstruction are the wave-front slopes registered by a Hartmann sensor or shearing interferometer. The theory is based on representing the slope-vector field as the sum of its potential and solenoid components; it introduces the concept of phase-source and phase-vortex density and uses strict integral expressions relating these quantities to the wave-front slopes. To overcome the difficulties arising from the singular character of phase distribution, use is made of regularization of the wave-front slopes. The slopes can be measured with an ideal point wave-front sensor. It is shown that the slopes measured at the output of a nonideal sensor can be treated as regularized values of these slopes. Numerical simulation of phase unwrapping from the reference values of the wave-front slopes has shown that the algorithm designed for visualization of local phase singularities and those for phase reconstruction are very helpful in eliminating the measurement noise.
The feasibility of noninterferometric methods to measure phase distribution in a laser beam cross section for visualization of the vortex dislocations of an optical speckle-field wave front is analyzed. Peculiarities of the phase retrieved from the measured intensity distribution (the phase problem in optics) and from the wave-front slopes measured by a Hartmann sensor are discussed. A concept of the vortex and the potential parts of the phase is introduced. An analytic formula to retrieve the potential phase from the measured intensity has been obtained. We show that the considered means of measurements allow the positions of the dislocation centers to be sensed and the spatial configuration of the intensity zero lines to be reconstructed.
These data are the first to identify an association between the ACE D-allele and DE in CCW. They provide evidence of a significant role for the RAS in the development of DE and suggest that clinical trials of ACE inhibition would be profitable in this group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.