A non-linear process of moisture transport in the soil containing thin inclusions has been investigated. The corresponding one-dimensional boundary value problem has been solved numerically with the finite element method. By means of numerical experiments the differences in pressure head jump values have been presented in the case of various conjugation conditions-classical and modified ones.
The distribution of an organic chemical and the filtration process in the soil which contains a thin geochemical barrier are considered. Microorganism colonies develop in the presence of organic chemicals in the soil which leads to the so-called phenomenon of bioclogging of the pore space. As a result, the conductivity characteristics of both the soil as a whole and the geochemical barrier change. Conjugation conditions as a component of the mathematical model of chemical filtration in the case of inhomogeneity of porous media and the presence of fine inclusions were modified for the case of bioclogging. The numerical solution of the corresponding nonlinear boundary value problem with modified conjugation conditions was found by the finite element method. The conditions of the existence of a generalized solution of the corresponding boundary value problem are indicated. The results on the theoretical accuracy of finite element solutions are presented. Differences in the value of pressure jumps at a thin geochemical barrier were analyzed for the case considered in the article and the classical case on a model example of filtration consolidation of the soil in the base of solid waste storage. The excess pressure in 600 days after the start of the process reaches 25 % of the initial value when taking into account the effect of bioclogging, while is only 6 % for the test case disregarding the specified effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.