Three sheep, equipped with cannulae in the dorsal rumen sac, abomasum and ileum, were fed a low sodium diet of artifically dried young grass. Mean daily intake of sodium was 310 mg. The sheep were given daily supplements of 0 or 2'3 g sodium by an intraruminal infusion.The concentration of K in mixed saliva and ruminal fluid from the sheep not given sodium supplements increased and the concentration of Na decreased markedly. The changes in the ion concentrations were associated with an increase of the transmural potential difference across the ruminal epithelium.The altered ion concentrations of Na and K in the ruminal fluid and the increased potential difference were accompanied by a decrease in Mg absorption from the forestomachs. The apparent availability of Mg from the gastrointestinal tract decreased from 34-5 (sodium supplementation) to 22-3 (low sodium intake).It is suggested that a daily intake of Na of 310 mg did not cover the sodium requirement of these sheep and that a low sodium intake influences the absorption of Mg in a similar manner as it has been observed with a high K intake.The results are discussed in context of grass tetany in ruminants. It is suggested that an inadequate intake of sodium is an overlooked factor of the pathogenesis of this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.