Parameters of the nanosecond overvoltage discharge plasma in an air gap of (1÷5) × 10 −3 m between the electrodes, which contains the vapor of an electrode material (Zn, Cu, Fe) injected into plasma due to the ectonic mechanism, have been studied. The dependences of those parameters on the ratio / between the electric field strength and the particle concentration in the discharge are calculated for the "air-copper vapor" system, by using the numerical simulation method. K e y w o r d s: nanosecond discharge, air, radiation emission by atoms and ions, plasma parameters, zinc, copper, iron.
Приведено оптичнi характеристики i параметри перенапруженого наносекундного розряду в аргонi мiж електродами з алюмiнiю i халькопiриту (СuInSe2) при p(Ar) = 13,3 і 101 кПа. Внаслiдок мiкровибухiв природних неоднорiдностей на робочих поверхнях електродiв в сильному електричному полi в плазму вносяться як пари алюмiнiю, так I пари халькопiриту, що створює передумови для синтезу за межами розряду тонких плiвок четверного халькопiриту – CuAlInSe2. Дослiджено iмпульси напруги i струму на розрядному промiжку величиною d = 1 · 10−3 м (розмiри наведено в системi СI), а також iмпульсний енергетичний внесок у плазму. Ретельно дослiджено спектри випромiнювання плазми, що дозволило встановити основнi продукти розпаду молекули халькопiриту та енергетичнi стани атомiв i однозарядних iонiв алюмiнiю, мiдi i iндiю, в яких вони утворюються в розрядi. Виявлено репернi спектральнi лiнiї атомiв I iонiв алюмiнiю, мiдi i iндiю, якi можуть бути використанi для контролю за процесом напилення тонких плiвок четверного халькопiриту. Методом числового моделювання параметрiв плазми перенапруженого наносекундного розряду на основi парiв алюмiнiю i халькопiриту, шляхом розв’язку кiнетичного рiвняння Больцмана для функцiї розподiлу електронiв за енергiями розраховано температуру i концентрацiю електронiв у розрядi, питомi втрати потужностi розряду на основнi електроннi процеси i константи швидкостi електронних процесiв в залежностi вiд величини параметра E/N (де E – напруженiсть електричного поля, N – загальна концентрацiя сумiшi парiв алюмiнiю та аргону).
The methodology, technique, and results of studies of the formation of films on the glass surface during the irradiation of water solutions of copper sulfate with the laser radiation are presented. We used the nanosecond radiation of an yttrium-aluminum garnet laser with the generation wavelength λ = 1 .06 μm. The studies used solutions with different concentrations of copper sulfate. The structure of the films obtained in this case is compared with the structure of the films obtained as a result of drying the solutions without exposure to a laser radiation. The resulting films have both ordered and disordered structures. The characteristic dimensions of the structural elements of the films are 0.5–2 μm. The transmission of films in the 300–1200 nm spectral region is studied. In general, the resulting films are transparent in this area. Their transmission practically does not depend on the wavelength, but is different for different concentrations of the solution of copper sulfate.
The spectroscopic characteristics of a bipolar, overstressed discharge of nanosecond duration between zinc electrodes in oxygen at a pressure p(O2) = 13.3 kPa are presented. In the process of microexplosions of inhomogeneities on the working surfaces of the electrodes in a strong electric field, zinc vapor is introduced into the discharge gap. This creates the prerequisites for the formation of zinc oxide molecules and clusters in the plasma and the synthesis of thin island zinc oxide films, which can be deposited on a dielectric substrate installed near the center of the discharge gap. The spectral characteristics of the discharge were investigated from the central part of the discharge gap 2 mm in size. The main excited components of the plasma of a vapor-gas mixture based on zinc and oxygen were established at high values of the parameter E / N (where E is the electric field strength; N is the total concentration of particles in the plasma), which, when deposited outside the discharge plasma, can lead to the formation of fine nanostructured films based on zinc oxide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.