Gate-modulated transport through partially aligned films of single-walled carbon nanotubes (SWNTs) in thin film type transistor structures are studied experimentally and theoretically. Measurements are reported on SWNTs grown by chemical vapor deposition with systematically varying degrees of alignment and coverage in transistors with a range of channel lengths and orientations perpendicular and parallel to the direction of alignment. A first principles stick-percolation-based transport model provides a simple, yet quantitative framework to interpret the sometimes counterintuitive transport parameters measured in these devices. The results highlight, for example, the dramatic influence of small degrees of SWNT misalignment on transistor performance and imply that coverage and alignment are correlated phenomena and therefore should be simultaneously optimized. The transport characteristics reflect heterogeneity in the underlying anisotropic metal-semiconductor stick-percolating network and cannot be reproduced by classical transport models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.