The authors study linear groups of infinite central dimension and of infinite p-rank all of whose proper subgroups of infinite p-rank are of finite central dimension.
We study a ZG-module A in the case where the group G is locally solvable and satisfies the condition min-naz and its cocentralizer in A is not an Artinian Z-module. We prove that the group G is solvable under the conditions indicated above. The structure of the group G is studied in detail in the case where this group is not a Chernikov group.
Under study are the solvable nonabelian linear groups of infinite central dimension and sectional p-rank, p ≥ 0, in which all proper nonabelian subgroups of infinite sectional p-rank have finite central dimension. We describe the structure of the groups of this class.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.