Introduction: Opioid analgesics are the most efficient and widely used drugs for the management of moderate to severe pain. However, side effects associated with mu receptor activation, such as respiratory depression, tolerance and physical dependence severely limit their clinical application. Currently, the kappa-opioid system is the most attractive in terms of the clinical problem of pain, because kappa-agonists do not cause euphoria and physical dependence. The purpose of this study was to evaluate the antinociceptive effect of the novel compound - RU-1205. Methods: The analgesic activity of RU-1205 was studied on nociceptive models that characterize the central and peripheral pathways of pain sensitivity (hot plate test, electrically induced vocalisation, formalin test, writhing test). Results: RU-1205 exhibited highly potent antinociceptive effects in rodent models of acute pain with ED50 values of 0.002 - 0.49 mg /kg. Pretreatment with the κ-opioid receptor antagonist norBinaltorphimine significantly attenuated the analgesic activity of investigated substance in a hot plate test. Conclusions: It was established that the compound shows a significant dose-dependent central and peripheral analgesic effect. It was assumed kappa-opioidergic mechanism of analgesic effect of RU-1205.
A putative opioid agonist RU-1205 was ineffective within in vitro model of electrically induced contractions of rat ileum assessing the μ- and δ-opioid receptor pathways, while morphine inhibited these contractions in a dose-dependent and naloxone-reversible manners with EC=2.6×10 M. In vivo experiments revealed no significant effects of RU-1205 on respiration and gastrointestinal tract contractile activity. In contrast, butorphanol decreased respiration rate by 25% (25-100 mg/kg) and slowed down the transit of labeled particles along the small intestine by 77.1% (1 mg/kg) and by 45.5% (10 mg/kg). Morphine-induced inhibition of peristalsis was dose-dependent with maximum effect (by 68.6%) observed in the dose of 10 mg/kg. It was concluded that the effects of RU-1205 are not related to activation μ- and δ-opioid receptors known to mediate the effects of non-selective opioid agonist morphine and agonist-antagonist butorphanol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.