Reduced dimensionality and quantum confinement in conjugated organic and polymer structures enhance the effects of electron correlation on virtual electronic excitation processes and nonlinear-optical responses. A microscopic many-electron description of the third-order susceptibilities Yijkl(-W4; w1, 2, c3) of conjugated structures is reviewed for one-dimensional chains and extended to two-dimensional conjugated cyclic structures. Electron correlation effects in effectively reduced dimensions result in highly correlated 7-electron virtual excitations that lead to large, ultrafast nonresonant nonlinear-optical responses. The increase of dimensionality from linear to cyclic chains is found to reduce the nonresonant isotropic third-order susceptibility yg. Resonant experimental studies of saturable absorption and optical bistability in ultrathin films of quasi-two-dimensional naphthalocyanine oligomers are also presented. In the saturable-absorption studies, the resonant nonlinear refractive index n was measured to be 1 X 10-4 cm2/kW in the wavelength range of operating laser diodes. Based on this result, electronic absorptive optical bistability is observed on a nanosecond time scale in a nonlinear Fabry-Perot interferometer employing the saturably absorbing naphthalocyanine film as the nonlinear-optical medium.
Using a recently developed many-electron theory of second and third order nonlinear optical susceptibilities, microscopic descriptions of γxxxx(-3ω;ω,ω,ω) are presented for two conformations of polyenes. The importance of electron correlations and the effects of variation in conformation and chain length are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.