Myeloid-derived suppressor cells (MDSCs) contribute to tumor-mediated immune escape and negatively correlate with overall survival of cancer patients. Nowadays, a variety of methods to target MDSCs are being investigated. Based on the intervention stage of MDSCs, namely development, expansion and activation, function and turnover, these methods can be divided into: (I) prevention or differentiation to mature cells, (II) blockade of MDSC expansion and activation, (III) inhibition of MDSC suppressive activity or (IV) depletion of intratumoral MDSCs. This review describes effective mono- or multimodal-therapies that target MDSCs for the benefit of cancer treatment.
Hibernation is an energy-conserving behavior consisting of periods of inhibited metabolism ('torpor') with lowered body temperature. Torpor bouts are interspersed by arousal periods, in which metabolism increases and body temperature returns to euthermia. In deep torpor, the body temperature typically decreases to 2-10°C, and major physiological and immunological changes occur. One of these alterations constitutes an almost complete depletion of circulating lymphocytes that is reversed rapidly upon arousal. Here we show that torpor induces the storage of lymphocytes in secondary lymphoid organs in response to a temperature-dependent drop in plasma levels of sphingosine-1-phosphate (S1P). Regulation of lymphocyte numbers was mediated through the type 1 S1P receptor (S1P 1 ), because administration of a specific antagonist (W146) during torpor (in a Syrian hamster at ∼8°C) precluded restoration of lymphocyte numbers upon subsequent arousal. Furthermore, S1P release from erythrocytes via ATP-binding cassette (ABC)-transporters was significantly inhibited at low body temperature (4°C) but was restored upon rewarming. Reversible lymphopenia also was observed during daily torpor (in a Djungarian hamster at ± 25°C), during forced hypothermia in anesthetized (summer-active) hamsters (at ± 9°C), and in a nonhibernator (rat at ∼19°C). Our results demonstrate that lymphopenia during hibernation in small mammals is driven by body temperature, via altered plasma S1P levels. S1P is recognized as an important bioactive lipid involved in regulating several other physiological processes as well and may be an important factor regulating additional physiological processes in hibernation as well as in mediating the effects of therapeutic hypothermia in patients.ibernation is an energy-conserving behavior consisting of periods of significantly inhibited metabolism (torpor) that result in a largely reduced heart and ventilation rate (1-3) and body temperature. Torpor bouts are interspersed by arousal periods with durations of 8-24 h, during which metabolism increases and body temperature rapidly returns to euthermia (2, 4). Hibernating mammals display major changes in their physiology that lead (among other changes) to an increased resistance to ischemia/reperfusion (5, 6) and a reduced immune function (7). Remarkably, despite the repetitive cycles of cooling and rewarming, hibernating animals do not show gross signs of organ damage (8). In humans, therapeutic hypothermia is used frequently to limit neuronal injury in cardiac arrest and major surgery of brain and heart (9). However, hypothermia as used during cardiac surgery is associated with increased renal injury postoperatively (10). Therefore, unraveling the mechanisms underlying the changes in physiology of hibernating mammals might be of substantial clinical relevance.
The high efficacy of therapeutic cancer vaccines in preclinical studies has yet to be fully achieved in clinical trials. Tumor immune suppression is a critical factor that hampers the desired antitumor effect. Here, we analyzed the combined effect of a cancer vaccine and the receptor tyrosine kinase inhibitor sunitinib. Sunitinib was administered intraperitoneally, alone or in combination with intramuscular immunization using a viral vector based cancer vaccine composed of Semliki Forest virus replicon particles and encoding the oncoproteins E6 and E7 (SFVeE6,7) of human papilloma virus (HPV). We first demonstrated that treatment of tumor-bearing mice with sunitinib alone dose-dependently depleted myeloid-derived suppressor cells (MDSCs) in the tumor, spleen and in circulation. Concomitantly, the number of CD8+ T cells increased 2–fold and, on the basis of CD69 expression, their activation status was greatly enhanced. The intrinsic immunosuppressive activity of residual MDSCs after sunitinib treatment was not changed in a dose-dependent fashion. We next combined sunitinib treatment with SFVeE6,7 immunization. This combined treatment resulted in a 1.5- and 3-fold increase of E7-specific cytotoxic T lymphocytes (CTLs) present within the circulation and tumor, respectively, as compared to immunization only. The ratio of E7-specific CTLs to MDSCs in blood thereby increased 10- to 20-fold and in tumors up to 12.5-fold. As a result, the combined treatment strongly enhanced the antitumor effect of the cancer vaccine. This study demonstrates that sunitinib creates a favorable microenvironment depleted of MDSCs and acts synergistically with a cancer vaccine resulting in enhanced levels of active tumor-antigen specific CTLs, thus changing the balance in favor of antitumor immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.