Root growth angle (RGA) in response to gravity controlled by auxin is a pertinent target trait for obtainment of higher yield in cereals. But molecular basis of this root architecture trait remain obscure in wheat and barley. We selected four cultivars two each for wheat and barley to unveil the molecular genetic mechanism of Deeper Rooting 1-like gene which controls RGA in rice leading to higher yield under drought imposition. Morphological analyses revealed a deeper and vertically oriented root growth in “NARC 2009” variety of wheat than “Galaxy” and two other barley cultivars “Scarlet” and “ISR42-8”. Three new homoeologs designated as TaANDRO1-like , TaBNDRO1-like and TaDNDRO1-like corresponding to A, B and D genomes of wheat could be isolated from “NARC 2009”. Due to frameshift and intronization/exonization events the gene structures of these paralogs exhibit variations in size. DRO1-like genes with five distinct domains prevail in diverse plant phyla from mosses to angiosperms but in lower plants their differentiation from LAZY, NGR and TAC1 (root and shoot angle genes) is enigmatic. Instead of IGT as denominator motif of this family, a new C-terminus motif WxxTD in the V-domain is proposed as family specific motif. The EAR-like motif IVLEM at the C-terminus of the TaADRO1-like and TaDDRO1-like that diverged to KLHTLIPNK in TaBDRO1-like and HvDRO1-like is the hallmark of these proteins. Split-YFP and yeast two hybrid assays complemented the interaction of TaDRO1-like with TOPLESS—a repressor of auxin regulated root promoting genes in plants—through IVLEM/KLHTLIPNK motif. Quantitative RT-PCR revealed abundance of DRO1-like RNA in root tips and spikelets while transcript signals were barely detectable in shoot and leaf tissues. Interestingly, wheat exhibited stronger expression of TaBDRO1-like than barley ( HvDRO1-like ), but TaBDRO1-like was the least expressing among three paralogs. The underlying cause of this expression divergence seems to be the presence of AuxRE motif TGTCTC and core TGTC with a coupling AuxRE-like motif ATTTTCTT proximal to the transcriptional start site in TaBDRO1-like and HvDRO1-like promoters. This is evident from binding of ARF1 to TGTCTC and TGTC motifs of TaBDRO1-like as revealed by yeast one-hybrid assay. Thus, evolution of DRO1-like wheat homoeologs might incorporate the C-terminus mutations as well as gain and loss of AuxREs and other cis- regulatory elements during expression divergence. Since root architecture is an important target trait for wheat crop improvement, therefore DRO1-like genes have potential applications in plant breeding for enhancement of plant productivity by the use of modern genome editing approaches.
Globally, rice is being consumed as a main staple food and faces different kinds of biotic and abiotic stresses such drought, salinity, and pest attacks. Through the cytokinin signaling, Type‐B authentic response regulators (ARR‐Bs) respond positively towards the environmental stimuli. ARR‐Bs are involved in abiotic stress tolerance and plant development but their molecular mechanisms in fragrant rice are still not fully explored. The current study showed the genome‐wide characterization of OsARR‐B genes under alkaline salt stress. Results showed that in total, 24 OsARR‐B genes were found and divided into four subgroups on the basis of a phylogenetic analysis. These genes were located on all rice chromosomes except 8 and 10. Analysis of gene duplications, gene structure, cis‐elements, protein–protein interactions, and miRNA were performed. Gene ontology analysis showed that OsARR‐B genes are involved in plant development through the regulation of molecular functions, biological processes, and cellular components. Furthermore, 117 and 192 RNA editing sites were detected in chloroplast and mitochondrial genes, respectively, encoding proteins of OsARR‐B. In chloroplast and mitochondrial genes, six and nine types of amino acid changes, respectively, were caused by RNA editing, showing that RNA editing has a role in the alkaline salt stress tolerance in fragrant rice. We also used a comparative transcriptome approach to study the gene expression changes in alkaline tolerant and susceptible genotypes. Under alkaline salt stress, OsARR‐B5, OsARR‐B7, OsARR‐B9, OsARR‐B10, OsARR‐B16, OsARR‐B22, and OsARR‐B23 showed higher transcript levels in alkaline salt tolerant genotypes as compared to susceptible ones. Quantitative RT‐PCR showed upregulation of gene expression in the alkaline tolerant genotypes under alkaline stress. Our study explored the gene expression profiling and RESs of two rice contrasting genotypes, which will help to understand the molecular mechanisms of alkaline salt tolerance in fragrant rice.
Receptor-like protein kinase1 (RPK1) genes play crucial roles in plant growth and development processes, root architecture, and abiotic stress regulation. A comprehensive study of the RPK1 gene family has not been reported in bread wheat (Triticum aestivum). Here, we reported the genome-wide identification, characterization, and expression patterns of the RPK1 gene family in wheat. Results confirmed 15 TaRPK1 genes, classified mainly into three sub-clades based on a phylogenetic tree. The TaRPK1 genes were mapped on chromosomes 1–3 in the respective A, B, and D genomes. Gene structure, motif conservation, collinearity prediction, and synteny analysis were carried out systematically. A Gene ontology study revealed that TaRPK1 genes play a vital role during molecular and biological processes. We also identified 18 putative miRNAs targeting TaRPK1 genes, suggesting their roles in growth, development, and stress responses. Cis-Regulatory elements interpreted the presence of light-related elements, hormone responsiveness, and abiotic stress-related motifs in the promoter regions. The SWISS_MODEL predicted the successful models of TaRPK1 proteins with at least 30% identity to the template, a widely accepted threshold for successful modeling. In silico expression analysis in different tissues and stages suggested that TaRPK1 genes exhibited the highest expression in root tissues. Moreover, qRT-PCR further validated the higher expression of TaRPK1 genes in roots of drought-tolerant varieties compared to the drought-susceptible variety. Collectively, the present study renders valuable information on the functioning of TaRPK1 genes in wheat that will be useful in further functional validation of these genes in future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.