Botswana's beef sector contributes 0.3% of the total world beef exports, i.e. US$ 42.4 billion as of the year 2013 and her major market is the European Union (EU). Unfortunately, her failure to comply with the frequently changing European Commission (EC) export regulations on livestock tracking and identification means that beef export to this market is sometimes suspended. Research trends indicate that smart agriculture solutions have gained popularity in agricultural production and can help keep up with the frequently changing EC export regulations especially on active tracking and identification of livestock. It is against this background that this paper presents the development of electronic control circuits for Wireless Sensor Network (WSN) and Group Special Messaging (GSM) to be utilized in a livestock tracking and identification system. It is envisaged that the proposed solution would help fulfill potential changes of EC regulations. Proteus 8 software is used to develop the circuit models. The controller used for this work is Arduino microcontroller. Simulation results show that the XBee shields are able to communicate successfully. This communication forms the basis for the WSN. The results indicate that the developed electronic control circuits for the WSN are viable. Future work will focus on the development of a prototype that will be tested and validated in real environment.
Smart technology and Internet of Things (IoT) applications have gained popularity in the development of agricultural systems with Wireless Sensor Networks (WSNs) increasingly becoming the building blocks for IoT applications. However, WSNs have a limited power supply. As a result, these systems have a short lifespan, limited memory and low computing power. This paper describes the development of a hybrid power module for WSN to be utilized in a livestock tracking and identification system. Mathematical and MATLAB-Simulink models are developed and used to simulate the characteristics of a lithium ion (Liion) battery; to power the mobile sensor node (eartag), a nickel metal hydrate (NimH) battery used to power the static sensor nodes, a solar cell and the hybrid power module. Simulation results show that individually, the power sources provide limited power but the hybrid system coupled with a switching block generates enough power for the system, this implies that the system is viable but a prolonged operation of the system will depend on the battery limitations and climatic conditions. Future work will focus on the development of a prototype that can be tested and validated in real environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.