High quality cassava flour (HQCF) processed from five different improved cassava varieties (TMS87164, NR8082, TME419, TMS0581 and TMS98/1632) were evaluated for their physicochemical, functional and pasting properties to determine their suitability for baked goods. The HQCFs were then blended with wheat flour (WF) at various ratios (0:100, 10:90, 20:80, 30:70, 40:60 and 50:50% HQCF:WF respectively) and analyzed for the various parameters. The results showed significantly (p<00.05) low contents of moisture, ash, fat, fibre and protein between the HQCF samples which increased significantly (p<0.05) with addition of wheat flour in the blends. However, the carbohydrates content of the HQCF did not vary significantly (p<0.05) between the cassava varieties ranging from 85.58-92.84% and decreasing significantly with increasing levels of WF in the blends. The cyanide content for HQCFs (2.04 to 48.13 ppm) was very low and within safe level for human consumption. The HQCFs exhibited low foaming and emulsion capacities but high bulk densities, water and oil absorption capacities as well as high degree of gelatinization, probably owing to the low protein and high carbohydrates. Gelatinization temperature of all the flour samples investigated (29.00 to 74.000C) fell within the recommended range. The HQCFs also exhibited high pasting properties which were observed to decrease with WF addition into the mix. Overall, HQCFs displayed desirable properties for its incorporation into baked goods as a replacement for wheat flour.
Bread prepared from blends of high quality cassava flour (HQCF) and wheat flour (WF) was evaluated to determine the suitability of HQCF as a partial replacement for wheat flour. Bread was prepared using ratios of 0: 100, 10:90, 20:80, 30:70, 40:60 and 50:50 HQCF/WF respectively and assessed for their physicochemical, physical and sensory properties. The results showed that bread with higher levels of HQCF had higher moisture and carbohydrates content but lower ash, fat and fibre contents. The moisture content significantly varied from 28.51 to 35.01%. The high moisture content of the HQCF replaced bread samples may be attributed to the higher carbohydrates (starch) which has tendency for water uptake and retention. This is evidenced by the higher loaf weight and loaf density of the HQCF replaced bread samples. However, loaf volume and oven spring were negatively affected by increased incorporation of HQCF in bread, suggesting that the low protein content of HQCF may be responsible. The results of the sensory evaluation revealed that replacement of wheat flour with HQCF beyond 10% negatively affected sensory attributes, supplementation levels between 20-30% were tolerated by the panelists. It is therefore concluded that HQCF can be used as a potential replacement for wheat flour in the baking of bread.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.