Cheng (1986) trained male rats to search for food in a rectangular arena that also contained distinctive visual patterns. He found that the rats used mainly the geometric framework of the box itself to find the food and claimed that geometrical information is processed in a specialized module, which is independent of feature information. The aim of the present set of experiments was to check if the previous results with male rats and an appetitive task could be extended to an aversive task while using both male and female rats and three-dimensional landmarks. In Experiments 1 and 2, rats were trained in a rectangular-shaped pool to find a hidden platform that had a location defined in terms of two sources of information—landmarks of different salience (less salient in Experiment 1, more salient in Experiment 2) outside the pool and a particular corner of the pool. The results showed that both males and females used mainly the particular corner of the pool, supporting Cheng’s suggestion. In addition, in the two experiments, what the rats learned with respect to the landmarks was negligible. Experiment 3 used a more difficult triangular pool in addition to the rectangular pool, in the absence of landmarks. The results revealed sex differences in the triangular pool but not in the easier rectangular pool. These results suggest that task difficulty is a factor when it comes to finding sex differences in rats in spatial tasks.
Summary Asphaltene precipitation is a common phenomenon in mature reservoirs that seriously impairs oil production. In high-temperature (HT) fractured carbonate reservoirs, the situation becomes critical when asphaltene precipitates at reservoir conditions, blocking the production channels and starting a cycle of production decline in which additional pressure drop increases the precipitation of the asphaltene fraction. Therefore, it is essential to make an early diagnosis of the problem and deliver an optimal solution to avoid further production decrease. A proper diagnosis regarding the point of precipitation along the production path requires a complete analysis of the well's production behavior and reservoir characteristics. To avoid asphaltene precipitation inside the rock matrix, different methods can be applied: maintaining reservoir pressure above the asphaltene-onset pressure, avoiding coproduction of incompatible reservoir fluids, adjusting artificial-lift conditions, or injecting solvents with inhibitors or dispersants. In two mature fields in southern Mexico that have been producing since 1995, an operator needed to determine where the asphaltene precipitation was occurring. An integrated diagnosis work flow was instrumented that included the creation and analysis of the asphaltene-phase envelope plus an asphaltene-onset screening test by use of a solids-detection system (SDS). After coupling screening results with a pressure/temperature flowing survey, it was identified that asphaltene precipitation occurred inside the reservoir when the bottomhole flowing pressure dropped below a critical level. To address the organic deposits and unstable pressure behavior successfully, asphaltene-precipitation characterization was essential. In some cases, a decrease in oil production after executing unsuccessful matrix-cleanup treatments with solvents results from a misdiagnosis of organic precipitation or a lack of knowledge about flocculation and precipitation causes. To avoid this problem, a new methodology for the inhibition-treatment design was added to the diagnosis work flow; this methodology includes a new adsorption-type asphaltene inhibitor as part of the matrix-cleanup treatment. As a result of this diagnostic-solution work flow, an optimum bullheaded inhibition treatment was determined and applied to the candidate wells. In all study cases, the time lapse between inhibition treatments was extended by 60 days on average, resulting in steadier oil flow rates plus significant reduction in well intervention and deferred production costs. In addition, the post-treatment results showed that, in 50% of the documented interventions, the inhibitor treatment improved overall production performance by at least 10%. The systematic engineering work flow presented in this paper includes the diagnostic procedure, data from laboratory testing, chemical selection, and treatment application. Subsequent treatment results enhanced the field operator's understanding of asphaltene precipitation in the formation matrix and provided more insight into maximizing oil production with specialized technology solutions that used a novel adsorption-type asphaltene inhibitor.
Asphaltene precipitation is a common phenomenon in mature reservoirs that seriously impairs oil production. In high-temperature (HT) fractured carbonate reservoirs, the situation becomes critical when asphaltene precipitates at reservoir conditions, blocking the fractured production channels and initiating a cycle of production decline in which additional pressure drop increases the precipitation of the asphaltene fraction. Therefore, it is essential to make an early diagnosis of the problem and deliver an optimal solution to avoid further production decrease.A proper diagnosis regarding the point of precipitation along the production path requires a complete analysis of the well's production behavior and reservoir characteristics. To avoid asphaltene precipitation inside the rock matrix, different methods can be applied: maintaining reservoir pressure above the asphaltene onset pressure, avoiding coproduction of incompatible reservoir fluids, adjusting artificial lift conditions, or injecting solvents with inhibitors or dispersants. In two mature fields located in southern Mexico that have been producing since 1995, an operator needed to determine where the asphaltene precipitation was occurring. An integrated diagnosis workflow that included the creation and analysis of the asphaltene phase envelope plus an asphaltene-onset screening test using a solids-detection system (SDS) was instrumented.After coupling screening results with a pressure-temperature flowing survey, it was identified that asphaltene precipitation occurred inside the reservoir when the bottom-hole flowing pressure dropped below a critical level. To address the organic deposits and unstable pressure behavior successfully, asphaltene precipitation characterization was essential. In some cases, a decrease in oil production after executing unsuccessful matrix cleanup treatments with solvents results from a misdiagnosis of organic precipitation or a lack of knowledge about flocculation and precipitation causes. To avoid this problem, a new methodology for the inhibition treatment design was added to the diagnosis workflow; this methodology includes a new adsorptiontype asphaltene inhibitor as part of the matrix cleanup treatment. As a result of this diagnostic-solution workflow, an optimum bullheaded inhibition treatment was determined and applied to the candidate wells. In all study cases, the time lapse between inhibition treatments was extended by 60 days on average, resulting in steadier oil flowrates plus significant reduction in well intervention and deferred production costs. Additionally, the post-treatment results showed that in 50% of the documented interventions, the inhibitor treatment improved overall production performance by at least 10%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.